Number Sequence

题目描述

A number sequence is defined as follows:

f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.

Given A, B, and n, you are to calculate the value of f(n).

输入

The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.

输出

For each test case, print the value of f(n) on a single line.

示例输入

1 1 3
1 2 10
0 0 0

示例输出

2
5

提示

知识扩展:本类算法在数字医疗、移动证券、手机彩票、益智类解谜类游戏软件中会经常采用。

来源

View Code
 1 #include<iostream>
 2 using namespace std ;
 3 int main()
 4 {
 5     int a, b, n, f[60] ;
 6     int flag, i, j, start, end ;
 7     while(cin>>a>>b>>n)
 8     {
 9         flag = 0 ;
10         if(a==0&&b==0&&n==0) break ;
11         f[1] = f[2] = 1 ;
12         for(i=3; i<=n&&!flag; i++)
13         {
14             f[i] = (a*f[i-1]+b*f[i-2])%7 ;//所给公式
15             for(j=2; j < i; j++)//查找循环结点
16             {
17                 if(f[i]==f[j]&&f[i-1]==f[j-1])
18                 {
19                     start = j ;//初始位置
20                     end = i ;//终点位置
21                     flag = 1 ;//找到的标志
22                     break ;//一旦找到循环结点,退出,节省时间
23                 }
24             }
25         }
26         if(flag) cout<<f[start+(n-start)%(end-start)]<<endl ;
27         else cout<<f[n]<<endl ;
28     }
29     return 0 ;
30 }
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
f(1)可取 0 1 2 3 4 5 6 ;
f(2)可取 0 1 2 3 4 5 6;
A B 固定所以两两组合共有 49 中情况
所以这是一个循环的方程;
posted @ 2013-01-25 16:34  yelan@yelan  阅读(195)  评论(0编辑  收藏  举报