GSS4 2713. Can you answer these queries IV 线段树
GSS7 Can you answer these queries IV
题目:给出一个数列,原数列和值不超过1e18,有两种操作:
0 x y:修改区间[x,y]所有数开方后向下调整至最近的整数
1 x y:询问区间[x,y]的和
分析:
昨天初看时没什么想法,于是留了个坑。终于在今天补上了。
既然给出了1e18这个条件,那么有什么用呢?于是想到了今年多校一题线段树区间操作时,根据一些性质能直接下沉到每个节点,这里可以吗?考虑1e18开方6次就下降到1了,因此每个节点最多被修改6次。于是我们每个节点(区间)记录一个该区间的最大值,每次修改时,先判断该区间是否最大的数已经等于1,等于的话,就不用继续往下修改了。不然的话,继续往下下沉。下沉到最终的区间时发现最大的数还大于1时,进行单点修改操作。在单点修改时同样如此判断。修改后update一下sum以及最大值就行。
交的时候RE了几次,后来看了一下题目下面的讨论,发现
2011-12-27 18:15:29 Riatre Foo
The only trick is in operations x > y.HORRIBLE
于是修改了一下,变成TLE了,囧。后来发现是I64d问题,改成lld就过了。代码中有输入的外挂(貌似快了不多)
#include <set> #include <map> #include <list> #include <cmath> #include <queue> #include <stack> #include <string> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; #define debug puts("here") #define rep(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<=b;i++) #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++) #define pb push_back #define RD(n) scanf("%d",&n) #define RD2(x,y) scanf("%d%d",&x,&y) #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w) #define All(vec) vec.begin(),vec.end() #define MP make_pair #define PII pair<int,int> #define PQ priority_queue #define cmax(x,y) x = max(x,y) #define cmin(x,y) x = min(x,y) #define Clear(x) memset(x,0,sizeof(x)) /* #pragma comment(linker, "/STACK:1024000000,1024000000") int size = 256 << 20; // 256MB char *p = (char*)malloc(size) + size; __asm__("movl %0, %%esp\n" :: "r"(p) ); */ /******** program ********************/ const int MAXN = 1e5+5; ll a[MAXN]; struct segTree{ int l,r; ll mx,sum; inline int mid(){ return (l+r)>>1; } }tree[MAXN<<2]; inline void update(int rt){ tree[rt].mx = max(tree[rt<<1].mx,tree[rt<<1|1].mx); tree[rt].sum = tree[rt<<1].sum+tree[rt<<1|1].sum; } void build(int l,int r,int rt){ tree[rt].l = l; tree[rt].r = r; if(l==r){ tree[rt].sum = tree[rt].mx = a[l]; return; } int mid = tree[rt].mid(); build(l,mid,rt<<1); build(mid+1,r,rt<<1|1); update(rt); } void modify(int rt){ if(tree[rt].mx==1LL)return; if(tree[rt].l==tree[rt].r){ tree[rt].sum = tree[rt].mx = ll( sqrt(tree[rt].mx+0.0) ); return; } modify(rt<<1); modify(rt<<1|1); update(rt); } void modify(int l,int r,int rt){ if(tree[rt].mx==1LL)return; if(l<=tree[rt].l&&tree[rt].r<=r){ modify(rt); return; } int mid = tree[rt].mid(); if(r<=mid) modify(l,r,rt<<1); else if(l>mid) modify(l,r,rt<<1|1); else{ modify(l,r,rt<<1); modify(l,r,rt<<1|1); } update(rt); } ll ask(int l,int r,int rt){ if(l<=tree[rt].l&&tree[rt].r<=r) return tree[rt].sum; int mid = tree[rt].mid(); if(r<=mid) return ask(l,r,rt<<1); else if(l>mid) return ask(l,r,rt<<1|1); else return ask(l,r,rt<<1) + ask(l,r,rt<<1|1); } inline void LL(ll &x){ x = 0; char ch; while(isdigit(ch=getchar())==0); x = ch-'0'; while(isdigit(ch=getchar())) x = x*10+ch-'0'; } inline void Int(int &x){ x = 0; char ch; while(isdigit(ch=getchar())==0); x = ch-'0'; while(isdigit(ch=getchar())) x = x*10+ch-'0'; } int main(){ #ifndef ONLINE_JUDGE freopen("sum.in","r",stdin); //freopen("sum.out","w",stdout); #endif int n,m,op,x,y; int ncase = 0; while(cin>>n){ rep1(i,n){ //scanf("%lld\n",&a[i]); LL(a[i]); } build(1,n,1); RD(m); printf("Case #%d:\n",++ncase); while(m--){ //RD3(op,x,y); Int(op); Int(x); Int(y); if(x>y)swap(x,y); if(op) printf("%lld\n",ask(x,y,1)); else modify(x,y,1); } puts(""); } return 0; }