数值分析笔记(3)——数值计算中的原则

数值计算中的原则

避免两个相近的数相减

如上图所示,因为\(x\)\(y\)非常相近,所以\(x-y << 0\),而\(x - y\)又位于分母,所以会导致误差变得非常大。要避免的另一方面的原因是,会导致有效数字位数大量减少,而我们要尽量保证有效数字多。

例题:

可以看到第二个解有效数字太少,那么就需要改变算法:

这里“根与系数”的关系指的是:

\[x_1 + x_2 = -\frac{b}{a}\\ x_1 \times x_2 = \frac{c}{a} \]

防止大数“吃掉”小数

吃掉即,与小数的计算过程对最终结果不起作用。

例子:

这是因为这里的变量使用了8位来储存,因为在转换到同一个量级的时候,两个小数都要被转换成9位,导致最后一位溢出,最终变成\(0.0 \times 10^8\),从而导致结果出错,小数被“吃掉”。这个问题是由计算机的存储数据的方式造成的。

解决方法:

绝对值太小的数不宜作除数

如果商特别大,下面继续加减乘除运算的时候可能会出现“大数吃掉小数”。

例如,如果这里的y恰好就是那个很小的数,那么就可能导致商绝对误差很大。

注意简化计算程序,减少计算次数

每一步计算都可能出现舍入误差,所以步骤太多的话可能会导致误差过大。

可以转换成下图公式:

选用数值稳定性好的算法

例题:求积分

可以看到第一步就出现了舍入误差,接着积累下去:

posted @ 2021-02-24 23:14  夜溅樱  阅读(1781)  评论(0编辑  收藏  举报