[Leetcode] 0111. 二叉树的最小深度

111. 二叉树的最小深度

题目描述

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:2

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

 

提示:

  • 树中节点数的范围在 [0, 105]
  • -1000 <= Node.val <= 1000

解法

方法一:递归

递归的终止条件是当前节点为空,此时返回 \(0\);如果当前节点左右子树有一个为空,返回不为空的子树的最小深度加 \(1\);如果当前节点左右子树都不为空,返回左右子树最小深度的较小值加 \(1\)

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 是二叉树的节点个数。

方法二:BFS

使用队列实现广度优先搜索,当我们找到一个叶子节点时,直接返回这个叶子节点的深度。广度优先搜索的性质保证了最先搜索到的叶子节点的深度一定最小。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。其中 \(n\) 是二叉树的节点个数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        if root is None:
            return 0
        if root.left is None:
            return 1 + self.minDepth(root.right)
        if root.right is None:
            return 1 + self.minDepth(root.left)
        return 1 + min(self.minDepth(root.left), self.minDepth(root.right))
class Solution:
    def minDepth(self, root: TreeNode) -> int:
        if not root:
            return 0

        que = collections.deque([(root, 1)])
        while que:
            node, depth = que.popleft()
            if not node.left and not node.right:
                return depth
            if node.left:
                que.append((node.left, depth + 1))
            if node.right:
                que.append((node.right, depth + 1))
        
        return 0

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int minDepth(TreeNode* root) {
        if (!root) {
            return 0;
        }
        if (!root->left) {
            return 1 + minDepth(root->right);
        }
        if (!root->right) {
            return 1 + minDepth(root->left);
        }
        return 1 + min(minDepth(root->left), minDepth(root->right));
    }
};
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int minDepth(TreeNode *root) {
        if (root == nullptr) {
            return 0;
        }

        queue<pair<TreeNode *, int> > que;
        que.emplace(root, 1);
        while (!que.empty()) {
            TreeNode *node = que.front().first;
            int depth = que.front().second;
            que.pop();
            if (node->left == nullptr && node->right == nullptr) {
                return depth;
            }
            if (node->left != nullptr) {
                que.emplace(node->left, depth + 1);
            }
            if (node->right != nullptr) {
                que.emplace(node->right, depth + 1);
            }
        }

        return 0;
    }
};

posted @ 2023-10-31 14:44  野哥李  阅读(12)  评论(0编辑  收藏  举报