数据分析05-matplotlib基本绘图、高级绘图
数据分析-05
数据分析-05
matplotlib基本功能详解
基本绘图
1)绘图核心API
案例: 绘制简单直线
import numpy as np
import matplotlib.pyplot as plt
# 绘制简单直线
x = np.array([1, 2, 3, 4, 5])
y = np.array([3, 6, 9, 12, 15])
# 绘制水平线、垂线
plt.axhline(y=6, ls=":", c="blue") # 添加水平直线
plt.axvline(x=4, ls="-", c="red") # 添加垂直直线
# 绘制多段垂线
plt.vlines([2, 3, 3.5], # 垂线的x坐标值
[10, 20, 30], # 每条垂线起始y坐标
[25, 35, 45]) # 每条垂线结束y坐标
plt.plot(x, y)
plt.show() # 显示图片,阻塞方法
2)设置线型、线宽
linestyle: 设置线型,常见取值有实线(’-’)、虚线(’–’)、点虚线(’-.’)、点线(’:’)
linewidth:线宽
color:颜色(red, blue, green)
alpha: 设置透明度(0~1之间)
案例:绘制正弦、余弦曲线,并设置线型、线宽、颜色、透明度
# 绘制正弦曲线
import numpy as np
import matplotlib.pyplot as plt
import math
x = np.arange(0, 2 * np.pi, 0.1) # 以0.1为单位,生成0~6的数据
print(x)
y1 = np.sin(x)
y2 = np.cos(x)
# 绘制图形
plt.plot(x, y1, label="sin", linewidth=2) # 实线,线宽2像素
plt.plot(x, y2, label="cos", linestyle="--", linewidth=4) # 虚线,线宽4像素
plt.xlabel("x") # x轴文字
plt.ylabel("y") # y轴文字
# 设置坐标轴范围
plt.xlim(0, 2 * math.pi)
plt.ylim(-1, 2)
plt.title("sin & cos") # 图标题
plt.legend() # 图例
plt.show()
3)设置坐标轴范围
语法:
#x_limt_min: <float> x轴范围最小值
#x_limit_max: <float> x轴范围最大值
plt.xlim(x_limt_min, x_limit_max)
#y_limt_min: <float> y轴范围最小值
#y_limit_max: <float> y轴范围最大值
plt.ylim(y_limt_min, y_limit_max)
4)设置坐标刻度
语法:
#x_val_list: x轴刻度值序列
#x_text_list: x轴刻度标签文本序列 [可选]
plt.xticks(x_val_list , x_text_list )
#y_val_list: y轴刻度值序列
#y_text_list: y轴刻度标签文本序列 [可选]
plt.yticks(y_val_list , y_text_list )
案例:绘制二次函数曲线
# 绘制二次函数曲线
import numpy as np
import matplotlib.pyplot as plt
import math
x = np.arange(-5, 5, 0.1) # 以0.1为单位,生成-5~5的数据
print(x)
y = x ** 2
# 绘制图形
plt.plot(x, y, label="$y = x ^ 2$",
linewidth=2, # 线宽2像素
color="red", # 颜色
alpha=0.5) # 透明度
plt.xlabel("x") # x轴文字
plt.ylabel("y") # y轴文字
# 设置坐标轴范围
plt.xlim(-10, 10)
plt.ylim(-1, 30)
# 设置刻度
x_tck = np.arange(-10, 10, 2)
x_txt = x_tck.astype("U")
plt.xticks(x_tck, x_txt)
y_tck = np.arange(-1, 30, 5)
y_txt = y_tck.astype("U")
plt.yticks(y_tck, y_txt)
plt.title("square") # 图标题
plt.legend(loc="upper right") # 图例 upper right, center
plt.show()
刻度文本的特殊语法 – LaTex排版语法字符串
r'$x^n+y^n=z^n$', r'$\int\frac{1}{x} dx = \ln |x| + C$', r'$-\frac{\pi}{2}$'
x n + y n = z n , ∫ 1 x d x = ln ∣ x ∣ + C , − π 2 x^n+y^n=z^n, \int\frac{1}{x} dx = \ln |x| + C, -\frac{\pi}{2} xn+yn=zn,∫x1dx=ln∣x∣+C,−2π
5)设置坐标轴
坐标轴名:left / right / bottom / top
# 获取当前坐标轴字典,{'left':左轴,'right':右轴,'bottom':下轴,'top':上轴 }
ax = plt.gca()
# 获取其中某个坐标轴
axis = ax.spines['坐标轴名']
# 设置坐标轴的位置。 该方法需要传入2个元素的元组作为参数
# type: <str> 移动坐标轴的参照类型 一般为'data' (以数据的值作为移动参照值)
# val: 参照值
axis.set_position(('data', val))
# 设置坐标轴的颜色
# color: <str> 颜色值字符串
axis.set_color(color)
案例:设置坐标轴格式
# 设置坐标轴
import matplotlib.pyplot as plt
ax = plt.gca()
axis_b = ax.spines['bottom'] # 获取下轴
axis_b.set_position(('data', 0)) # 设置下轴位置, 以数据作为参照值
axis_l = ax.spines['left'] # 获取左轴
axis_l.set_position(('data', 0)) # 设置左轴位置, 以数据作为参照值
ax.spines['top'].set_color('none') # 设置顶部轴无色
ax.spines['right'].set_color('none') # 设置右部轴无色
plt.show()
6)图例
显示两条曲线的图例,并测试loc属性。
# 再绘制曲线时定义曲线的label
# label: <关键字参数 str> 支持LaTex排版语法字符串
plt.plot(xarray, yarray ... label='', ...)
# 设置图例的位置
# loc: <关键字参数> 制定图例的显示位置 (若不设置loc,则显示默认位置)
# =============== =============
# Location String Location Code
# =============== =============
# 'best' 0
# 'upper right' 1
# 'upper left' 2
# 'lower left' 3
# 'lower right' 4
# 'right' 5
# 'center left' 6
# 'center right' 7
# 'lower center' 8
# 'upper center' 9
# 'center' 10
# =============== =============
plt.legend(loc='')
7)特殊点
语法:
# xarray: <序列> 所有需要标注点的水平坐标组成的序列
# yarray: <序列> 所有需要标注点的垂直坐标组成的序列
plt.scatter(xarray, yarray,
marker='', #点型 ~ matplotlib.markers
s='', #大小
edgecolor='', #边缘色
facecolor='', #填充色
zorder=3 #绘制图层编号 (编号越大,图层越靠上)
)
示例:在二次函数图像中添加特殊点
# 绘制特殊点
plt.scatter(x_tck, # x坐标数组
x_tck ** 2, # y坐标数组
marker="s", # 点形状 s:square
s=40, # 大小
facecolor="blue", # 填充色
zorder=3) # 图层编号
marker点型可参照:help(matplotlib.markers)
也可参照附录: matplotlib point样式
8)备注
语法:
# 在图表中为某个点添加备注。包含备注文本,备注箭头等图像的设置。
plt.annotate(
r'$\frac{\pi}{2}$', #备注中显示的文本内容
xycoords='data', #备注目标点所使用的坐标系(data表示数据坐标系)
xy=(x, y), #备注目标点的坐标
textcoords='offset points', #备注文本所使用的坐标系(offset points表示参照点的偏移坐标系)
xytext=(x, y), #备注文本的坐标
fontsize=14, #备注文本的字体大小
arrowprops=dict() #使用字典定义文本指向目标点的箭头样式
)
arrowprops参数使用字典定义指向目标点的箭头样式
#arrowprops字典参数的常用key
arrowprops=dict(
arrowstyle='', #定义箭头样式
connectionstyle='' #定义连接线的样式
)
箭头样式(arrowstyle)字符串如下
============ =============================================
Name Attrs
============ =============================================
'-' None
'->' head_length=0.4,head_width=0.2
'-[' widthB=1.0,lengthB=0.2,angleB=None
'|-|' widthA=1.0,widthB=1.0
'-|>' head_length=0.4,head_width=0.2
'<-' head_length=0.4,head_width=0.2
'<->' head_length=0.4,head_width=0.2
'<|-' head_length=0.4,head_width=0.2
'<|-|>' head_length=0.4,head_width=0.2
'fancy' head_length=0.4,head_width=0.4,tail_width=0.4
'simple' head_length=0.5,head_width=0.5,tail_width=0.2
'wedge' tail_width=0.3,shrink_factor=0.5
============ =============================================
连接线样式(connectionstyle)字符串如下
============ =============================================
Name Attrs
============ =============================================
'angle' angleA=90,angleB=0,rad=0.0
'angle3' angleA=90,angleB=0`
'arc' angleA=0,angleB=0,armA=None,armB=None,rad=0.0
'arc3' rad=0.0
'bar' armA=0.0,armB=0.0,fraction=0.3,angle=None
============ =============================================
示例:在二次函数图像中添加备注
# 设置备注
plt.annotate(
r'$y = x ^ 2$', #备注中显示的文本内容
xycoords='data', #备注目标点所使用的坐标系(data表示数据坐标系)
xy=(4, 16), #备注目标点的坐标 (4,16)
textcoords='offset points', #备注文本所使用的坐标系(offset points表示参照点的偏移坐标系)
xytext=(20, 30), #备注文本的坐标
fontsize=14, #备注文本的字体大小
arrowprops=dict(
arrowstyle="->", connectionstyle="angle3"
) #使用字典定义文本指向目标点的箭头样式
)
高级绘图
语法:绘制两个窗口,一起显示。
# 手动构建 matplotlib 窗口
plt.figure(
'sub-fig', #窗口标题栏文本
figsize=(4, 3), #窗口大小 <元组>
facecolor='' #图表背景色
)
plt.show()
plt.figure方法不仅可以构建一个新窗口,如果已经构建过title='xxx’的窗口,又使用figure方法构建了title=‘xxx’ 的窗口的话,mp将不会创建新的窗口,而是把title='xxx’的窗口置为当前操作窗口。
设置当前窗口的参数
语法:测试窗口相关参数
# 设置图表标题 显示在图表上方
plt.title(title, fontsize=12)
# 设置水平轴的文本
plt.xlabel(x_label_str, fontsize=12)
# 设置垂直轴的文本
plt.ylabel(y_label_str, fontsize=12)
# 设置刻度参数 labelsize设置刻度字体大小
plt.tick_params(..., labelsize=8, ...)
# 设置图表网格线 linestyle设置网格线的样式
# - or solid 粗线
# -- or dashed 虚线
# -. or dashdot 点虚线
# : or dotted 点线
plt.grid(linestyle='')
# 设置紧凑布局,把图表相关参数都显示在窗口中
plt.tight_layout()
示例:绘制两个图像窗口
# 绘制两个图像窗口
import matplotlib.pyplot as plt
plt.figure("FigureA", facecolor="lightgray")
plt.grid(linestyle="-.") # 设置网格线
plt.figure("FigureB", facecolor="gray")
plt.xlabel("Date", fontsize=14)
plt.ylabel("Price", fontsize=14)
plt.grid(linestyle="--") # 设置网格线
plt.tight_layout() # 设置紧凑布局
plt.show()
执行结果:
1)子图
矩阵式布局
绘制矩阵式子图布局相关API:
plt.figure('Subplot Layout', facecolor='lightgray')
# 拆分矩阵
# rows: 行数
# cols: 列数
# num: 编号
plt.subplot(rows, cols, num)
# 1 2 3
# 4 5 6
# 7 8 9
plt.subplot(3, 3, 5) #操作3*3的矩阵中编号为5的子图
plt.subplot(335) #简写
案例:绘制9宫格矩阵式子图,每个子图中写一个数字。
plt.figure('Subplot Layout', facecolor='lightgray')
for i in range(9):
plt.subplot(3, 3, i+1)
plt.text(
0.5, 0.5, i+1,
ha='center',
va='center',
size=36,
alpha=0.5,
withdash=False
)
plt.xticks([])
plt.yticks([])
plt.tight_layout() # 紧凑布局
plt.show()
执行结果:
网格式布局(很少使用)
网格式布局支持单元格的合并。
绘制网格式子图布局相关API:
import matplotlib.gridspec as mg
plt.figure('Grid Layout', facecolor='lightgray')
# 调用GridSpec方法拆分网格式布局
# rows: 行数
# cols: 列数
# gs = mg.GridSpec(rows, cols) 拆分成3行3列
gs = mg.GridSpec(3, 3)
# 合并0行与0、1列为一个子图表
plt.subplot(gs[0, :2])
plt.text(0.5, 0.5, '1', ha='center', va='center', size=36)
plt.show()
案例:绘制一个自定义网格布局。
import matplotlib.gridspec as mg
plt.figure('GridLayout', facecolor='lightgray')
gridsubs = plt.GridSpec(3, 3)
# 合并0行、0/1列为一个子图
plt.subplot(gridsubs[0, :2])
plt.text(0.5, 0.5, 1, ha='center', va='center', size=36)
plt.tight_layout()
plt.xticks([])
plt.yticks([])
自由式布局(很少使用)
自由式布局相关API:
plt.figure('Flow Layout', facecolor='lightgray')
# 设置图标的位置,给出左下角点坐标与宽高即可
# left_bottom_x: 坐下角点x坐标
# left_bottom_x: 坐下角点y坐标
# width: 宽度
# height: 高度
# plt.axes([left_bottom_x, left_bottom_y, width, height])
plt.axes([0.03, 0.03, 0.94, 0.94])
plt.text(0.5, 0.5, '1', ha='center', va='center', size=36)
plt.show()
案例:测试自由式布局,定位子图。
plt.figure('FlowLayout', facecolor='lightgray')
plt.axes([0.1, 0.2, 0.5, 0.3])
plt.text(0.5, 0.5, 1, ha='center', va='center', size=36)
plt.show()
2)散点图
可以通过每个点的坐标、颜色、大小和形状表示不同的特征值。
身高 | 体重 | 性别 | 年龄段 | 种族 |
---|---|---|---|---|
180 | 80 | 男 | 中年 | 亚洲 |
160 | 50 | 女 | 青少 | 美洲 |
绘制散点图的相关API:
plt.scatter(
x, # x轴坐标数组
y, # y轴坐标数组
marker='', # 点型
s=10, # 大小
color='', # 颜色
edgecolor='', # 边缘颜色
facecolor='', # 填充色
zorder='' # 图层序号
)
numpy.random提供了normal函数用于产生符合 正态分布 的随机数
n = 100
# 172: 期望值
# 10: 标准差
# n: 数字生成数量
x = np.random.normal(172, 20, n)
y = np.random.normal(60, 10, n)
案例:绘制平面散点图。
# 散点图示例
import matplotlib.pyplot as plt
import numpy as np
n = 40
# 期望值:期望值是该变量输出值的平均数
# 标准差:是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标
x = np.random.normal(172, 20 ,n ) # 期望值, 标准差, 生成数量
y = np.random.normal(60, 10, n) # 期望值, 标准差, 生成数量
x2 = np.random.normal(180, 20 ,n ) # 期望值, 标准差, 生成数量
y2 = np.random.normal(70, 10, n) # 期望值, 标准差, 生成数量
plt.figure("scatter", facecolor="lightgray")
plt.title("Scatter Demo")
plt.scatter(x, y, c="red", marker="D")
plt.scatter(x2, y2, c="blue", marker="v")
plt.xlim(100, 240)
plt.ylim(0, 100)
plt.show()
cmap颜色映射表参照附件:cmap颜色映射表
3)填充
以某种颜色自动填充两条曲线的闭合区域。
plt.fill_between(
x, # x轴的水平坐标
sin_x, # 下边界曲线上点的垂直坐标
cos_x, # 上边界曲线上点的垂直坐标
sin_x<cos_x, # 填充条件,为True时填充
color='', # 填充颜色
alpha=0.2 # 透明度
)
案例:绘制两条曲线: sin_x = sin(x) cos_x = cos(x / 2) / 2 [0-8π]
import matplotlib.pyplot as plt
import numpy as np
n = 1000
x = np.linspace(0, 8 * np.pi, n) # 返回指定间隔上的等距数字
sin_y = np.sin(x) # 计算sin函数值
cos_y = np.cos(x / 2) / 2 # 计算cos函数值
plt.figure('Fill', facecolor='lightgray')
plt.title('Fill', fontsize=20)
plt.xlabel('x', fontsize=14) # x轴标签
plt.ylabel('y', fontsize=14) # y轴
plt.tick_params(labelsize=10) # 刻度
plt.grid(linestyle=':')
plt.plot(x, sin_y, c='dodgerblue', label=r'$y=sin(x)$')
plt.plot(x, cos_y, c='orangered', label=r'$y=\frac{1}{2}cos(\frac{x}{2})$')
# 填充cos_y < sin_y的部分
plt.fill_between(x, cos_y, sin_y, cos_y < sin_y, color='dodgerblue', alpha=0.5)
# 填充cos_y > sin_y的部分
plt.fill_between(x, cos_y, sin_y, cos_y > sin_y, color='orangered', alpha=0.5)
plt.legend()
plt.show()
4)条形图(柱状图)
绘制柱状图的相关API:
# 设置使中文显示完整
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.figure('Bar', facecolor='lightgray')
plt.bar(
x, # 水平坐标数组
y, # 柱状图高度数组
width, # 柱子的宽度
color='', # 填充颜色
label='', #
alpha=0.2 #
)
案例:先以柱状图绘制苹果12个月的销量,然后再绘制橘子的销量。
import matplotlib.pyplot as plt
import numpy as np
apples = np.array([30, 25, 22, 36, 21, 29, 20, 24, 33, 19, 27, 15])
oranges = np.array([24, 33, 19, 27, 35, 20, 15, 27, 20, 32, 20, 22])
plt.figure('Bar', facecolor='lightgray')
plt.title('Bar', fontsize=20)
plt.xlabel('Month', fontsize=14)
plt.ylabel('Price', fontsize=14)
plt.tick_params(labelsize=10)
plt.grid(axis='y', linestyle=':')
plt.ylim((0, 40))
x = np.arange(len(apples)) # 产生均匀数组,长度等同于apples
plt.bar(x - 0.2, # 横轴数据
apples, # 纵轴数据
0.4, # 柱体宽度
color='dodgerblue',
label='Apple')
plt.bar(x + 0.2, # 横轴数据
oranges, # 纵轴数据
0.4, # 柱体宽度
color='orangered', label='Orange', alpha=0.75)
plt.xticks(x, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
plt.legend()
plt.show()
5)直方图
执行结果:
绘制直方图相关API:
plt.hist(
x, # 值列表
bins, # 直方柱数量
color, # 颜色
edgecolor # 边缘颜色
)
案例:绘制统计直方图显示图片像素亮度分布:
import numpy as np
import matplotlib.pyplot as plt
import scipy.misc as sm
img = sm.imread('../data/forest.jpg', True)
print(img.shape)
pixes = img.ravel()
plt.figure('Image Hist', facecolor='lightgray')
plt.title('Image Hist', fontsize=18)
plt.xticks(np.linspace(0, 255, 11))
plt.hist(x=pixes, bins=10, color='dodgerblue', range=(0, 255), edgecolor='white', normed=False)
plt.show()
扩展:随机数模块与概率分布
numpy提供了random模块生成服从特定统计规律的随机数序列。
一组随机数可能呈现如下分布:
统计班级同学体重:[63.2, 76.5, 65.7, 68.9, 59.4 ... ]
统计班级同学身高:[163.2, 176.5, 165.7, 168.9, 159.4 ... ]
统计班级同学到班时间:['07:20:22','07:30:48','07:21:23','07:24:58' ...]
又或者呈现如下分布:
统计班级同学体重级别:[偏轻, 中等, 偏重, 超重, 中等, 偏重, 超重, 中等, 偏重...]
统计班级同学身高级别:[偏低, 中等, 中等, 中等, 中等, 偏高, 中等, 中等, 偏高...]
统计最近班级同学迟到人数(共10人):[0, 1, 3, 0, 0, 1, 2, 0, 0, 0 ....]
二项分布(binomial)
二项分布就是重复n次独立事件的伯努利试验(Bernoulli experiment)。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,事件发生与否的概率在每一次独立试验中都保持不变,例如抛硬币。
# 产生size个随机数,每个随机数来自n次尝试中的成功次数,其中每次尝试成功的概率为p
np.random.binomial(n, p, size)
二项分布可以用于求如下场景的概率的近似值:
- 某人投篮命中率为0.3,投10次,进5个球的概率。
sum(np.random.binomial(10, 0.3, 200000) == 5) / 200000
- 某人打客服电话,客服接通率是0.6,一共打了3次,都没人接的概率。
sum(np.random.binomial(3, 0.6, 200000) == 0) / 200000
示例:模拟某人以30%命中率投篮,每次投10个,计算并打每种进球可能的概率
# 二项式分布示例
import numpy as np
import matplotlib.pyplot as mp
# binomial: 从二项分布中抽取样本
# n:尝试次数 p:概率
r = np.random.binomial(10, 0.5, 200000)
mp.hist(r, 11, edgecolor='white')
mp.legend()
mp.show()
执行结果:
超几何分布(hypergeometric)
超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。以下是一组超几何分布的示例:
(1)10件产品中含有3件次品,从中任意取4件产品,所取出的次品件数服从超几何分布;
(2)袋中有8红球4白球,从中任意摸出5个球,摸出红球个数服从超几何分布;
(3)某班45个学生,女生20人,现从中选7人做代表,代表中所含女生的人数服从超几何分布;
(4)15张卡片中含有5件写有“奖”字,从中任意取3件产品,所取出的卡片中含有奖字的卡片张数服从超几何分布;
(5)10位代表中有5位支持候选人A,随机采访3人,其中支持候选人A的人数服从超几何分布;
(6)盘中装有10个粽子,豆沙粽2个,肉粽3个,白粽5个,从中任选3个,取到的豆沙粽的个数服从超几何分布。
API介绍:
# 产生size个随机数,每个随机数t为在总样本中随机抽取nsample个样本后好样本的个数,总样本由ngood个好样本和nbad个坏样本组成
np.random.hypergeometric(ngood, nbad, nsample, size)
示例一:从6个好苹果、4个坏苹果中抽取3个苹果,返回好球的数量(执行10次)
import numpy as np
# 从6个好球、4个坏球中抽取3个球,返回好球的数量(执行10次)
n = np.random.hypergeometric(6, 4, 3, 10)
print(n)
print(n.mean())
执行结果:
[2 2 3 1 2 2 1 3 2 2]
2.0
正态分布(normal)
# 产生size个随机数,服从标准正态(期望=0, 标准差=1)分布。
np.random.normal(size)
# 产生size个随机数,服从正态分布(期望=1, 标准差=10)。
np.random.normal(loc=1, scale=10, size)
标 准 正 态 分 布 概 率 密 度 : e − x 2 2 2 π 标准正态分布概率密度: \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} 标准正态分布概率密度:2πe−2x2
案例:生成10000个服从正态分布的随机数并绘制随机值的频数直方图。
import numpy as np
import matplotlib.pyplot as mp
samples = np.random.normal(size=10000)
mp.figure('Normal Distribution',facecolor='lightgray')
mp.title('Normal Distribution', fontsize=20)
mp.xlabel('Sample', fontsize=14)
mp.ylabel('Occurrence', fontsize=14)
mp.tick_params(labelsize=12)
mp.grid(axis='y', linestyle=':')
mp.hist(samples, 100, edgecolor='steelblue',
facecolor='deepskyblue', label='Normal')
mp.legend()
mp.show()
6)饼图
绘制饼状图的基本API:
plt.pie(
values, # 值列表
spaces, # 扇形之间的间距列表
labels, # 标签列表
colors, # 颜色列表
'%d%%', # 标签所占比例格式
shadow=True, # 是否显示阴影
startangle=90 # 逆时针绘制饼状图时的起始角度
radius=1 # 半径
)
案例:绘制饼状图显示6门编程语言的流行程度:
import matplotlib.pyplot as plt
import numpy as np
plt.figure('pie', facecolor='lightgray')
plt.title('Pie', fontsize=20)
# 整理数据
values = [15, 13.3, 8.5, 7.3, 4.62, 51.28]
spaces = [0.05, 0.01, 0.01, 0.01, 0.01, 0.01]
labels = ['Java', 'C', 'Python', 'C++', 'VB', 'Other']
colors = ['dodgerblue', 'orangered', 'limegreen', 'violet', 'gold','blue']
# 等轴比例
plt.axis('equal')
plt.pie(
values, # 值列表
spaces, # 扇形之间的间距列表
labels, # 标签列表
colors, # 颜色列表
'%d%%', # 标签所占比例格式
shadow=True, # 是否显示阴影
startangle=90, # 逆时针绘制饼状图时的起始角度
radius=1 # 半径
)
plt.legend()
plt.show()
代码总结
import numpy as np
import matplotlib.pyplot as plt
基本绘图
x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([10, 19, 11, 21, 15, 30])
plt.plot(x, y)
[<matplotlib.lines.Line2D at 0x2c1cdb681c0>]
# 绘制水平线:
plt.plot(x, y)
plt.hlines(15, 2, 4)
plt.vlines([1,2,3], [12,13,14], [25,26,27])
<matplotlib.collections.LineCollection at 0x2c1cdc18910>
matplotlib基本绘图相关API
# 从[-π, π]中拆出1000个点
x = np.linspace(-np.pi, np.pi, 1000)
sinx = np.sin(x)
cosx = np.cos(x)/2 # y=cos(x)/2
# 设置坐标轴的可视范围
# plt.xlim(0, 3.2)
# plt.ylim(0, 1.1)
# 设置x轴的刻度文本
vals = [-np.pi, -np.pi/2, 0, np.pi/2, np.pi]
texts = [r'$-\pi$', r'$-\frac{\pi}{2}$', '0',
r'$\frac{\pi}{2}$', r'$\pi$']
plt.xticks(vals, texts)
# 设置坐标轴,改为平面直角坐标系
plt.yticks([-1, -0.5, 0.5, 1])
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))
# 图例
plt.plot(x, sinx, linestyle='--', label=r'$y=sin(x)$',
linewidth=2, color='dodgerblue', alpha=0.8)
plt.plot(x, cosx, linestyle='-.', linewidth=2,
label=r'$y=\frac{1}{2}cos(x)$', color='orangered')
# 绘制两个特殊点
xs = [np.pi/2, np.pi/2]
ys = [1, 0]
plt.scatter(xs, ys, marker='o', s=100, edgecolor='red',
facecolor='green', zorder=3)
# 添加备注
plt.annotate(
r'$[\frac{\pi}{2}, 1]$',#备注中显示的文本内容
xycoords='data',#备注目标点所使用的坐标系(data表示数据坐标系)
xy=(np.pi/2, 1),#备注目标点的坐标
textcoords='offset points',#备注文本所使用的坐标系(offset points表示参照点的偏移坐标系)
xytext=(30, 15),#备注文本的坐标
fontsize=14,#备注文本的字体大小
arrowprops=dict(
arrowstyle='->',
connectionstyle='angle3'
)#使用字典定义文本指向目标点的箭头样式
)
plt.legend()
<matplotlib.legend.Legend at 0x2c1cdca33a0>
高级绘图
plt.figure('Figure A')
plt.figure('Figure B')
plt.show()
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
绘制子图
# 矩阵式布局
for i in range(1, 10):
plt.subplot(3,3,i) # 激活(3*3)矩阵布局下的第一张子图
plt.text(0.5, 0.5, i, size=30, alpha=0.8, va='center', ha='center')
plt.xticks([])
plt.yticks([])
绘制网格式布局
import matplotlib.gridspec as mg
gs = mg.GridSpec(3, 3)
plt.subplot(gs[0, :2])
plt.text(0.5, 0.5, 1, size=30, alpha=0.8, va='center', ha='center')
plt.xticks([])
plt.yticks([])
plt.subplot(gs[:2, -1])
plt.text(0.5, 0.5, 2, size=30, alpha=0.8, va='center', ha='center')
plt.xticks([])
plt.yticks([])
plt.subplot(gs[1, 1])
plt.text(0.5, 0.5, 3, size=30, alpha=0.8, va='center', ha='center')
plt.xticks([])
plt.yticks([])
plt.subplot(gs[1:, 0])
plt.text(0.5, 0.5, 4, size=30, alpha=0.8, va='center', ha='center')
plt.xticks([])
plt.yticks([])
plt.subplot(gs[-1, 1:])
plt.text(0.5, 0.5, 5, size=30, alpha=0.8, va='center', ha='center')
plt.xticks([])
plt.yticks([])
([], <a list of 0 Text major ticklabel objects>)
自由式布局
plt.axes([0.03, 0.03, 0.94, 0.2])
plt.axes([0.03, 0.3, 0.5, 0.3])
<matplotlib.axes._axes.Axes at 0x2c1cdbed0a0>
散点图
# 随机生成两组数据,a表示身高,b表示体重
n = 200
a = np.random.normal(175, 8, n)
b = np.random.normal(60, 13, n)
# 为每个散点设置不同的颜色
plt.scatter(a, b, marker='o', s=80, c=a, cmap='jet', label='Persons')
plt.legend()
<matplotlib.legend.Legend at 0x2c1cdbaba60>
填充
n = 1000
x = np.linspace(0, 8 * np.pi, n) # 返回指定间隔上的等距数字
sin_y = np.sin(x) # 计算sin函数值
cos_y = np.cos(x / 2) / 2 # 计算cos函数值
plt.figure('Fill', facecolor='lightgray')
plt.title('Fill', fontsize=20)
plt.xlabel('x', fontsize=14) # x轴标签
plt.ylabel('y', fontsize=14) # y轴
plt.tick_params(labelsize=10) # 刻度
plt.grid(linestyle=':')
plt.plot(x, sin_y, c='dodgerblue', label=r'$y=sin(x)$')
plt.plot(x, cos_y, c='orangered', label=r'$y=\frac{1}{2}cos(\frac{x}{2})$')
# 填充cos_y < sin_y的部分
plt.fill_between(x, cos_y, sin_y, cos_y < sin_y, color='dodgerblue', alpha=0.5)
# 填充cos_y > sin_y的部分
plt.fill_between(x, cos_y, sin_y, cos_y > sin_y, color='orangered', alpha=0.5)
plt.legend()
<matplotlib.legend.Legend at 0x2c1cddaf7c0>
柱状图
# 设置使中文显示完整,若中文设置不成功:
# 1. 安装错误提示中缺失的字体:sans-serif, SimHei
# 2. 删除缓存目录
# 3. 重启
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
x = np.arange(12)
apples = np.random.normal(70, 20, len(x))
# 绘制柱状图
plt.bar(x-0.2, apples, 0.4, color='dodgerblue', label='Apples')
# 修改x轴刻度文本
texts = ['一月', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
plt.xticks(x, texts)
# 绘制橘子的销量
oranges = np.random.normal(70, 20, len(x))
plt.bar(x+0.2, oranges, 0.4, color='orangered', label='Oranges')
plt.legend()
<matplotlib.legend.Legend at 0x2c1cdc7c790>
直方图
ary = np.random.normal(0,1,1000)
plt.hist(ary,10,color='dodgerblue',edgecolor='white')
(array([ 4., 19., 64., 151., 262., 232., 159., 86., 21., 2.]),
array([-3.3544655 , -2.68188299, -2.00930049, -1.33671799, -0.66413548,
0.00844702, 0.68102952, 1.35361202, 2.02619453, 2.69877703,
3.37135953]),
<a list of 10 Patch objects>)
随机数与概率分布
r=np.random.binomial(10,0.6,10000)
for i in range(11):
p = (r==i).sum() / 10000
print(i,':',p)
0 : 0.0
1 : 0.0023
2 : 0.0099
3 : 0.0414
4 : 0.1148
5 : 0.1985
6 : 0.2526
7 : 0.2194
8 : 0.1178
9 : 0.0354
10 : 0.0079
r=np.random.binomial(3,0.6,200000)
for i in range(4):
p = (r==i).sum() / 200000
print(i,':',p)
0 : 0.06419
1 : 0.287175
2 : 0.43216
3 : 0.216475
r = np.random.hypergeometric(6,4,3,100000)
for i in range(4):
p = (r==i).sum()/100000
print(i,':',p)
0 : 0.03337
1 : 0.29835
2 : 0.50076
3 : 0.16752
饼状图
values = [15, 13.3, 8.5, 7.3, 4.62, 51.28]
spaces = [0.1, 0.01, 0.01, 0.01, 0.01, 0.01]
labels = ['Java', 'C', 'Python', 'C++', 'VB', 'Other']
colors = ['dodgerblue', 'orangered', 'limegreen', 'violet', 'gold','blue']
plt.pie(values,spaces,labels,colors,'%.lf%%',shadow=True,startangle=90,radius=1)
plt.title('Pie Chart')
plt.axis('equal')
plt.legend()
plt.show()