【机器学习与深度学习理论要点】13. 什么是线性回归,线性回归特点及使用情况

1)什么是线性回归

线性回归是指:通过数据样本,找到一个最佳拟合数据样本的线性模型,并用于预测。线性方程的一般表达形式为:
y = w 0 + w 1 x y = w_0 + w_1x y=w0+w1x
其中,x和y为已知, w 0 , w 1 w_0,w_1 w0,w1是要经过学习获得的参数。

2)什么情况下使用线性回归

  • 数据样本呈线性分布。在二维平面中,线性分布的特征是,数据呈一个狭长的条状分布,并且没有明显弯曲。
  • 已知模型为线性模型。

3)线性回归的特点

①优点

  • 思想简单,实现容易。建模迅速,对于小数据量、简单的关系很有效。
  • 是许多强大的非线性模型基础。
  • 线性回归模型容易理解,结果具有很好的可解释性,有利于决策分析。
  • 蕴含机器学习中的很多重要思想。

②缺点

  • 对于非线性数据或者数据特征间具有相关性多项式回归难以建模。
  • 难以很好地表达高度复杂的数据。

4)多元回归

多元回归是线性回归的推广,含有一个变量称为线性回归,含有多个变量称为多元回归。多元回归的表达式为:
y = w 0 + w 1 x 1 + w 2 x 2 + . . . + w n x n y = w_0 + w_1x_1 + w_2x_2 + ... + w_nx_n y=w0+w1x1+w2x2+...+wnxn
只有一个变量的时候,模型是平面中的一条直线;有两个变量的时候,模型是空间中的一个平面;有更多变量时,模型将是更高维的

posted @ 2023-04-14 15:35  野哥李  阅读(64)  评论(0编辑  收藏  举报  来源