[Pytorch框架] 2.1.3 神经网络包nn和优化器optm
PyTorch 基础 : 神经网络包nn和优化器optm
torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。
这里我们主要介绍几个一些常用的类
约定:torch.nn 我们为了方便使用,会为他设置别名为nn,本章除nn以外还有其他的命名约定
# 首先要引入相关的包
import torch
# 引入torch.nn并指定别名
import torch.nn as nn
#打印一下版本
torch.__version__
'1.0.0'
除了nn别名以外,我们还引用了nn.functional,这个包中包含了神经网络中使用的一些常用函数,这些函数的特点是,不具有可学习的参数(如ReLU,pool,DropOut等),这些函数可以放在构造函数中,也可以不放,但是这里建议不放。
一般情况下我们会将nn.functional 设置为大写的F,这样缩写方便调用
import torch.nn.functional as F
定义一个网络
PyTorch中已经为我们准备好了现成的网络模型,只要继承nn.Module,并实现它的forward方法,PyTorch会根据autograd,自动实现backward函数,在forward函数中可使用任何tensor支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。
class Net(nn.Module):
def __init__(self):
# nn.Module子类的函数必须在构造函数中执行父类的构造函数
super(Net, self).__init__()
# 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'3'表示卷积核为3*3
self.conv1 = nn.Conv2d(1, 6, 3)
#线性层,输入1350个特征,输出10个特征
self.fc1 = nn.Linear(1350, 10) #这里的1350是如何计算的呢?这就要看后面的forward函数
#正向传播
def forward(self, x):
print(x.size()) # 结果:[1, 1, 32, 32]
# 卷积 -> 激活 -> 池化
x = self.conv1(x) #根据卷积的尺寸计算公式,计算结果是30,具体计算公式后面第二章第四节 卷积神经网络 有详细介绍。
x = F.relu(x)
print(x.size()) # 结果:[1, 6, 30, 30]
x = F.max_pool2d(x, (2, 2)) #我们使用池化层,计算结果是15
x = F.relu(x)
print(x.size()) # 结果:[1, 6, 15, 15]
# reshape,‘-1’表示自适应
#这里做的就是压扁的操作 就是把后面的[1, 6, 15, 15]压扁,变为 [1, 1350]
x = x.view(x.size()[0], -1)
print(x.size()) # 这里就是fc1层的的输入1350
x = self.fc1(x)
return x
net = Net()
print(net)
Net(
(conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=1350, out_features=10, bias=True)
)
网络的可学习参数通过net.parameters()返回
for parameters in net.parameters():
print(parameters)
Parameter containing:
tensor([[[[ 0.2745, 0.2594, 0.0171],
[ 0.0429, 0.3013, -0.0208],
[ 0.1459, -0.3223, 0.1797]]],
[[[ 0.1847, 0.0227, -0.1919],
[-0.0210, -0.1336, -0.2176],
[-0.2164, -0.1244, -0.2428]]],
[[[ 0.1042, -0.0055, -0.2171],
[ 0.3306, -0.2808, 0.2058],
[ 0.2492, 0.2971, 0.2277]]],
[[[ 0.2134, -0.0644, -0.3044],
[ 0.0040, 0.0828, -0.2093],
[ 0.0204, 0.1065, 0.1168]]],
[[[ 0.1651, -0.2244, 0.3072],
[-0.2301, 0.2443, -0.2340],
[ 0.0685, 0.1026, 0.1754]]],
[[[ 0.1691, -0.0790, 0.2617],
[ 0.1956, 0.1477, 0.0877],
[ 0.0538, -0.3091, 0.2030]]]], requires_grad=True)
Parameter containing:
tensor([ 0.2355, 0.2949, -0.1283, -0.0848, 0.2027, -0.3331],
requires_grad=True)
Parameter containing:
tensor([[ 2.0555e-02, -2.1445e-02, -1.7981e-02, ..., -2.3864e-02,
8.5149e-03, -6.2071e-04],
[-1.1755e-02, 1.0010e-02, 2.1978e-02, ..., 1.8433e-02,
7.1362e-03, -4.0951e-03],
[ 1.6187e-02, 2.1623e-02, 1.1840e-02, ..., 5.7059e-03,
-2.7165e-02, 1.3463e-03],
...,
[-3.2552e-03, 1.7277e-02, -1.4907e-02, ..., 7.4232e-03,
-2.7188e-02, -4.6431e-03],
[-1.9786e-02, -3.7382e-03, 1.2259e-02, ..., 3.2471e-03,
-1.2375e-02, -1.6372e-02],
[-8.2350e-03, 4.1301e-03, -1.9192e-03, ..., -2.3119e-05,
2.0167e-03, 1.9528e-02]], requires_grad=True)
Parameter containing:
tensor([ 0.0162, -0.0146, -0.0218, 0.0212, -0.0119, -0.0142, -0.0079, 0.0171,
0.0205, 0.0164], requires_grad=True)
net.named_parameters可同时返回可学习的参数及名称。
for name,parameters in net.named_parameters():
print(name,':',parameters.size())
conv1.weight : torch.Size([6, 1, 3, 3])
conv1.bias : torch.Size([6])
fc1.weight : torch.Size([10, 1350])
fc1.bias : torch.Size([10])
forward函数的输入和输出都是Tensor
input = torch.randn(1, 1, 32, 32) # 这里的对应前面fforward的输入是32
out = net(input)
out.size()
torch.Size([1, 1, 32, 32])
torch.Size([1, 6, 30, 30])
torch.Size([1, 6, 15, 15])
torch.Size([1, 1350])
torch.Size([1, 10])
input.size()
torch.Size([1, 1, 32, 32])
在反向传播前,先要将所有参数的梯度清零
net.zero_grad()
out.backward(torch.ones(1,10)) # 反向传播的实现是PyTorch自动实现的,我们只要调用这个函数即可
注意:torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。
也就是说,就算我们输入一个样本,也会对样本进行分批,所以,所有的输入都会增加一个维度,我们对比下刚才的input,nn中定义为3维,但是我们人工创建时多增加了一个维度,变为了4维,最前面的1即为batch-size
损失函数
在nn中PyTorch还预制了常用的损失函数,下面我们用MSELoss用来计算均方误差
y = torch.arange(0,10).view(1,10).float()
criterion = nn.MSELoss()
loss = criterion(out, y)
#loss是个scalar,我们可以直接用item获取到他的python类型的数值
print(loss.item())
28.92203712463379
优化器
在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下:
weight = weight - learning_rate * gradient
在torch.optim中实现大多数的优化方法,例如RMSProp、Adam、SGD等,下面我们使用SGD做个简单的样例
import torch.optim
out = net(input) # 这里调用的时候会打印出我们在forword函数中打印的x的大小
criterion = nn.MSELoss()
loss = criterion(out, y)
#新建一个优化器,SGD只需要要调整的参数和学习率
optimizer = torch.optim.SGD(net.parameters(), lr = 0.01)
# 先梯度清零(与net.zero_grad()效果一样)
optimizer.zero_grad()
loss.backward()
#更新参数
optimizer.step()
torch.Size([1, 1, 32, 32])
torch.Size([1, 6, 30, 30])
torch.Size([1, 6, 15, 15])
torch.Size([1, 1350])
这样,神经网络的数据的一个完整的传播就已经通过PyTorch实现了,下面一章将介绍PyTorch提供的数据加载和处理工具,使用这些工具可以方便的处理所需要的数据。
看完这节,大家可能对神经网络模型里面的一些参数的计算方式还有疑惑,这部分会在第二章 第四节 卷积神经网络有详细介绍,并且在第三章 第二节 MNIST数据集手写数字识别的实践代码中有详细的注释说明。