POJ1502

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <climits>
using namespace std;
const int N = 105;
const int MAX = 0xfffffff;
int edge[N][N];
int n, e;
int s[N];
bool vis[N];
void init()
{
	for (int i = 0; i < n; ++i)
	{
		for (int j = 0; j < n; ++j)
		{
			edge[i][j] = -1;
		}
	}
	for (int i = 0; i < n; ++i)
	{
		vis[i] = false;
		s[i] = MAX;
	}
}


void dijkstra()
{
	int p, te, tm;
	s[0] = 0;
	vis[0] = true;
	p = 0;
	for (int i = 0; i < n - 1; ++i)
	{
		for (int j = 0; j < n; ++j)
		{
			if (!vis[j] && edge[p][j] != -1 &&  s[p] + edge[p][j] < s[j])
			{
				s[j] = s[p] +edge[p][j];
			}
		}
		tm = MAX;
		for (int j = 0; j < n; ++j)
		{
			if (!vis[j] && s[j] < tm)
			{
				tm = s[j];
				te = j;
			}
		}
		vis[te] = true;
		p = te;
	}
}


int change(char str[])
{
	if (str[0] == 'x') return -1;
	int ret = 0;
	while (*str)
	{
		ret = ret * 10 + *str++ - '0';
	}
	return ret;
}


int main()
{
	char str[35];
	int dis;
	scanf("%d", &n);
	init();
	for (int i = 0; i < n; ++i)
	{
		edge[i][i] = 0;
		for (int j = 0; j < i; ++j)
		{
			scanf("%s", str);
			dis = change(str);
			//cout<<*str<<" ";
			edge[i][j] = edge[j][i] = dis;
		}
	}
	dijkstra();
	int MAX = 0;
	for (int i = 1; i < n; ++i)
	{
		if (s[i] > MAX) MAX = s[i];
	}
	printf("%d\n", MAX);
	return 0;
}


POJ1502
题意:求单源最短路径,不过中间需要处理下特殊字符的情况,输入是个坑


输入:
n(点集)
n-1行
邻接矩阵下三角,x字符另外处理


输出:
源点到所有点最短路径中最大的值


解题思路:
单源最短路径有很多算法可以求解,简单一点的就是dij(N^2),另外可以用bellman-ford算法求,相应SPFA是对bellman-ford队列的优化,具体优化操作则是在存取队列节点时,不断进行松弛操作,直至队列为空。


贴上算法与实现书上用SPFA实现的代码以及floyd算法
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <vector>
#include <math.h>
#include <queue>
#include <stdlib.h>
#define maxn 1000
#define INF 100000000
using namespace std;
vector < pair <int,int> > g[maxn+10];
char ch[10000],ans[100];
int node,edge,src;
int dis[maxn+10];
bool inQueue[maxn+10];
queue<int> que;
pair <int,int> suit;
void SPFA()
{
    for (int i=0; i<=node; i++)
        dis[i]=INF;
    memset(inQueue,false,sizeof(int)*(node+5));
    dis[src]=0;
    while(!que.empty())
    {
        que.pop();
    }
    que.push(src);
    inQueue[src]=true;
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        for(int i=0; i!=g[u].size(); i++)
        {
            if ( dis[u] + g[u][i].second <dis[g[u][i].first] )
            {
                dis[g[u][i].first] = dis[u] + g[u][i].second;
                if (!inQueue[g[u][i].first])
                {
                    inQueue[g[u][i].first] = true;
                    que.push(g[u][i].first);
                }
            }
        }
        inQueue[u]=false;
    }
}
int main()
{
    while( scanf("%d",&node)!=EOF )
    {
        getchar();
        for(int i=2; i<=node; i++)
        {
            gets(ch);
            int add,ji=1;
            char *p=ch;
            while(sscanf(p,"%s%n",ans,&add)!=EOF)
            {
                if(ans[0]=='x')
                {
                    ji++;    
                    p=p+add;
                    continue;
                }
                suit.second=atoi(ans);
                suit.first=ji;
                g[i].push_back(suit);
                suit.first=i;
                g[ji].push_back(suit);
                p=p+add;
                ji++;
            }
        }
        src=1;
        SPFA();
        int max=-1;
        for(int i=1; i<=node; i++)
        {
            if( max < dis[i] )
                max=dis[i];
        }
        printf("%d\n",max);
    }
    return 0;
}

void floyd()
{
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}











posted @ 2015-07-14 14:14  __夜风  阅读(186)  评论(0编辑  收藏  举报