poj 2891 Strange Way to Express Integers 不互质的模同余方程组求解
给定同余方程组
X = r1 ( mod a1 )
X = r2 ( mod a2 )
...
X = rn ( mod an )
求解正整数X, 若不存在输出 -1
关于 线性同余方程组求解, 看笔者前一篇博客关于求解方式,模板裸题
#include<stdio.h> typedef long long LL; LL ExGcd( LL a, LL b, LL &x, LL &y ) { if( b == 0 ) { x=1;y=0; return a; } LL r = ExGcd( b, a%b, x, y ); LL t = x; x = y; y = t - a/b*y; return r; } LL Modline( LL r[], LL a[], int n ) { // X = r[i] ( mod a[i] ) LL rr = r[0], aa = a[0]; for(int i = 1; i < n; i++ ) { // aa*x + a[i]*y = ( r[i] - rr ); LL C = r[i] - rr, x, y; LL d = ExGcd( aa, a[i], x, y ); if( (C%d) != 0 ) return -1; LL Mod = a[i]/d; x = ( ( x*(C/d)% Mod ) + Mod ) % Mod; rr = rr + aa*x; // 余数累加 aa = aa*a[i]/d; // n = n1*n2*...*nk } return rr; } int main() { int n; LL r[10], a[10]; while( scanf("%d", &n) != EOF) { for(int i = 0; i < n; i++) scanf("%lld %lld",&a[i],&r[i] ); printf("%lld\n", Modline( r, a, n ) ); } return 0; }