矩阵的定义及其运算规则

 

 

 

2.1 矩阵的定义及其运算规则

2.1.1 矩阵的定义

    一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m ×n阵。
    矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或
。即:
                    (2-3)
    我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母 ,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。
    当m=n时,则称为n阶方阵,并用表示。当矩阵(aij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵 。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。

2.1.2 三角形矩阵
    由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。
    如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: , 


2.1.3 单位矩阵与零矩阵
    在方阵中,如果只有的元素不等于零,而其他元素全为零,如:
               
    则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,如: ,则称为单位矩阵。单位矩阵常用E来表示,即: 
            
    当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。


2.1.4 矩阵的加法

    矩阵A=(aijm×n和B=(bijm×n相加时,必须要有相同的行数和列数。如以C=(cijm ×n表示矩阵A及B的和,则有:

       
式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。
    由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵):
    (1)交换律:A+B=B+A   
    (2)结合律:(A+B)+C=A+(B+C)

2.1.5 数与矩阵的乘法

    我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如:

         

    由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: 
    (1) k(A+B)=kA+kB
    (2) (k+h)A=kA+hA
    (3) k(hA)=khA


2.1.6 矩阵的乘法

    若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义。矩阵的元素的计算方法定义为第一个矩阵第i行的元素与第二个矩阵第j列元素对应乘积的和。若: 

         

    则矩阵的元素由定义知其计算公式为:
                         (2-4)

【例2-1】  设有两矩阵为:,试求该两矩阵的积。
     【解】由于A矩阵的列数等于B矩阵的行数,故可乘,其结果设为C:
其中:    
【例2-2】  已知:A=,B=,求A、B两个矩阵的积。
    【解】计算结果如下: 矩阵的乘法具有下列性质:
    (1)通常矩阵的乘积是不可交换的。
    (2)矩阵的乘法是可结合的。
    (3)设A是m×n矩阵, B、C是两个n×t矩阵,则有:A(B+C)=AB+AC。
    (4)设A是m×n矩阵,B是n×t矩阵。则对任意常数k有:k(AB)=(kA)B=A(kB)。

【例2-3】   用矩阵表示的某一组方程为:
                                         (2-5)
    式中: 
                (2-6) 
    试将矩阵公式展开,列出方程组。

    【解】现将(2-6)式代入(2-5)式得:

                                       (2-7)
将上式右边计算整理得:
                                           (2-8)
可得方程组:
        
     可见,上述方程组可以写成(2-5)式的矩阵形式。上述方程组就是测量平差中的误差方程组,故知(2-5)式即为误差方程组的矩阵表达式。式中称为改正数阵,称为误差方程组的系数阵,称为未知数阵,称为误差方程组的常数项阵。

【例2-4】  设由n个观测值列出r个条件式如下,试用矩阵表示。 
                   
【解】现记:                 (2-9)
    则条件方程组可用矩阵表示成: 
                                                                  (2-10)
上式中称为条件方程组的系数阵,称为改正数阵,称为条件方程组的闭合差列阵。

转自:http://survey.01www.com/bxgc/article_show.asp?ArticleID=136

posted on 2012-03-15 15:32  鸳都学童  阅读(8300)  评论(0编辑  收藏  举报

导航