碳化硅选型
近年来,国内外对碳化硅的关注度日益增加,尤其是国外的领先厂商,他们在这个市场的步伐更是走得非常快。究竟这个产品有什么魔力?让我们来看一下。
碳化硅是何方神圣?
碳化硅是由碳元素和硅元素组成的一种化合物半导体材料。碳化硅(SiC)和氮化镓(GaN)、氮化铝(ALN)、氧化镓(Ga2O3)等,因为禁带宽度大于2.2eV统称为宽禁带半导体材料,在国内也称为第三代半导体材料。
宽禁带半导体:价电子所在能带与自由电子所在能带之间的间隙称为禁带或带隙。所以禁带的宽度实际上反映了被束缚的价电子要成为自由电子所必须额外获得的能量。硅的禁带宽度为1.12电子伏特(eV),而宽禁带半导体材料是指禁带宽度在2.3eV及以上的半导体材料
在半导体业内从材料端分为:第一代元素半导体材料,如硅(Si)和锗(Ge);第二代化合物半导体材料:如砷化镓(GaAs)、磷化铟(InP)等;第三代宽禁带材料,如碳化硅(SiC)、氮化镓(GaN)、氮化铝(ALN)、氧化镓(Ga2O3)等。
其中碳化硅和氮化镓是目前商业前景最明朗的半导体材料,堪称半导体产业内新一代“黄金赛道”。
历史上人类第一次发现碳化硅是在1891年,美国人艾奇逊在电溶金刚石的时候发现一种碳的化合物,这就是碳化硅首次合成和发现。在经历了百年的探索之后,特别是进入21世纪以后,人类终于理清了碳化硅的优点和特性,并利用碳化硅特性,做出各种新器件,碳化硅行业得到较快发展。
相比传统的硅材料,碳化硅的禁带宽度是硅的3倍;导热率为硅的4-5倍;击穿电压为硅的8倍;电子饱和漂移速率为硅的2倍。
种种特性意味着碳化硅特别适于制造耐高温、耐高压,耐大电流的高频大功率的器件。
目前已知的碳化硅有约200种晶体结构形态,分立方密排的闪锌矿α晶型结构(2H、4H、6H、15R)和六角密排的纤锌矿β晶型结构(3C-SiC)等。
其中β晶型结构(3C-SiC)可以用来制造高频器件以及其他薄膜材料的衬底,例如用来生长氮化镓外延层、制造碳化硅基氮化镓微波射频器件等。α晶型4H可以用来制造大功率器件;6H最稳定,可以用来制作光电器件。
3C-SiC 晶体结构
碳化硅未来是否会替代硅?
第三代半导体材料和传统硅材料,应用领域是完全不同的,硅更多的是用来制作存储器、处理器、数字电路和模拟电路等传统的集成电路芯片。而碳化硅因为能承受大电压和大电流,特别适合用来制造大功率器件、微波射频器件以及光电器件等。特别是在功率半导体领域未来碳化硅成本降低后,会对硅基的MOSFET IGBT 等进行一定的替代。但是碳化硅不会用来做数字芯片,两者是互补关系,部分功率器件领域,未来碳化硅芯片将占据优势。
新一代黄金赛道,得碳化硅者得天下
从应用端讲,碳化硅被称为“黄金赛道”丝毫不过分。
目前碳化硅和氮化镓这两种芯片,如果想最大程度利用其材料本身的特性,较为理想的方案便是在碳化硅单晶衬底上生长外延层。即碳化硅上长碳化硅外延层,用于制造功率器件;碳化硅上长氮化镓外延层,可以用来制造中低压高频功率器件(小于650V)、大功率微波射频器件以及光电器件。
有人不禁要问,碳化硅上长同质外延可以理解,但是为什么可以成为氮化镓外延片的最佳异质衬底?氮化镓外延片为什么不用氮化镓单晶衬底呢?其实从来理论上来讲,氮化镓外延片最好就是用本身氮化镓的单晶衬底,但是氮化镓单晶衬底实在太难了做,反应过程中有上百种副产物很难控制,同时长晶效率奇低,且面积较小、价格昂贵,不具备任何经济性。而碳化硅和氮化镓有着超过95%的晶格适配度,性能指标远超其他衬底材料,如蓝宝石、硅、砷化镓等。因此碳化硅基氮化镓外延片成为最佳选择。
所以碳化硅衬底材料可以满足两种当下最具潜力材料的对衬底材料的需求,“一材两用”,因此这便是“得碳化硅者得天下”的说法来源。
碳化硅有啥优势?
如果只算碳化硅芯片,在功率半导体方面碳化硅的对比传统硅基功率芯片,有着无可比拟的优势:碳化硅能承受更大的电流和电压、更高的开关速度、更小的能量损失、更耐高温。因此用碳化硅的做成的功率模组可以相应的减少了电容、电感、线圈、散热组件的部件,使得整个功率器件模组更加轻巧、节能、输出功率更强,同时还增强了可靠性,优点十分明显。
从终端应用层上来看在碳化硅材料在高铁、汽车电子、智能电网、光伏逆变、工业机电、数据中心、白色家电、消费电子、5G通信、次世代显示等领域有着广泛的应用,市场潜力巨大。
原文链接:
近年来,国内外对碳化硅的关注度日益增加,尤其是国外的领先厂商,他们在这个市场的步伐更是走得非常快。究竟这个产品有什么魔力?让我们来看一下。
碳化硅是何方神圣?
碳化硅是由碳元素和硅元素组成的一种化合物半导体材料。碳化硅(SiC)和氮化镓(GaN)、氮化铝(ALN)、氧化镓(Ga2O3)等,因为禁带宽度大于2.2eV统称为宽禁带半导体材料,在国内也称为第三代半导体材料。
在半导体业内从材料端分为:第一代元素半导体材料,如硅(Si)和锗(Ge);第二代化合物半导体材料:如砷化镓(GaAs)、磷化铟(InP)等;第三代宽禁带材料,如碳化硅(SiC)、氮化镓(GaN)、氮化铝(ALN)、氧化镓(Ga2O3)等。
其中碳化硅和氮化镓是目前商业前景最明朗的半导体材料,堪称半导体产业内新一代“黄金赛道”。
历史上人类第一次发现碳化硅是在1891年,美国人艾奇逊在电溶金刚石的时候发现一种碳的化合物,这就是碳化硅首次合成和发现。在经历了百年的探索之后,特别是进入21世纪以后,人类终于理清了碳化硅的优点和特性,并利用碳化硅特性,做出各种新器件,碳化硅行业得到较快发展。
相比传统的硅材料,碳化硅的禁带宽度是硅的3倍;导热率为硅的4-5倍;击穿电压为硅的8倍;电子饱和漂移速率为硅的2倍。
种种特性意味着碳化硅特别适于制造耐高温、耐高压,耐大电流的高频大功率的器件。
目前已知的碳化硅有约200种晶体结构形态,分立方密排的闪锌矿α晶型结构(2H、4H、6H、15R)和六角密排的纤锌矿β晶型结构(3C-SiC)等。
其中β晶型结构(3C-SiC)可以用来制造高频器件以及其他薄膜材料的衬底,例如用来生长氮化镓外延层、制造碳化硅基氮化镓微波射频器件等。α晶型4H可以用来制造大功率器件;6H最稳定,可以用来制作光电器件。
3C-SiC 晶体结构
碳化硅未来是否会替代硅?
第三代半导体材料和传统硅材料,应用领域是完全不同的,硅更多的是用来制作存储器、处理器、数字电路和模拟电路等传统的集成电路芯片。而碳化硅因为能承受大电压和大电流,特别适合用来制造大功率器件、微波射频器件以及光电器件等。特别是在功率半导体领域未来碳化硅成本降低后,会对硅基的MOSFET IGBT 等进行一定的替代。但是碳化硅不会用来做数字芯片,两者是互补关系,部分功率器件领域,未来碳化硅芯片将占据优势。
新一代黄金赛道,得碳化硅者得天下
从应用端讲,碳化硅被称为“黄金赛道”丝毫不过分。
目前碳化硅和氮化镓这两种芯片,如果想最大程度利用其材料本身的特性,较为理想的方案便是在碳化硅单晶衬底上生长外延层。即碳化硅上长碳化硅外延层,用于制造功率器件;碳化硅上长氮化镓外延层,可以用来制造中低压高频功率器件(小于650V)、大功率微波射频器件以及光电器件。
有人不禁要问,碳化硅上长同质外延可以理解,但是为什么可以成为氮化镓外延片的最佳异质衬底?氮化镓外延片为什么不用氮化镓单晶衬底呢?其实从来理论上来讲,氮化镓外延片最好就是用本身氮化镓的单晶衬底,但是氮化镓单晶衬底实在太难了做,反应过程中有上百种副产物很难控制,同时长晶效率奇低,且面积较小、价格昂贵,不具备任何经济性。而碳化硅和氮化镓有着超过95%的晶格适配度,性能指标远超其他衬底材料,如蓝宝石、硅、砷化镓等。因此碳化硅基氮化镓外延片成为最佳选择。
所以碳化硅衬底材料可以满足两种当下最具潜力材料的对衬底材料的需求,“一材两用”,因此这便是“得碳化硅者得天下”的说法来源。
碳化硅有啥优势?
如果只算碳化硅芯片,在功率半导体方面碳化硅的对比传统硅基功率芯片,有着无可比拟的优势:碳化硅能承受更大的电流和电压、更高的开关速度、更小的能量损失、更耐高温。因此用碳化硅的做成的功率模组可以相应的减少了电容、电感、线圈、散热组件的部件,使得整个功率器件模组更加轻巧、节能、输出功率更强,同时还增强了可靠性,优点十分明显。
从终端应用层上来看在碳化硅材料在高铁、汽车电子、智能电网、光伏逆变、工业机电、数据中心、白色家电、消费电子、5G通信、次世代显示等领域有着广泛的应用,市场潜力巨大。
原文链接:
小科普|大家都在关注的碳化硅(SiC)是什么? - 知乎
https://zhuanlan.zhihu.com/p/81067772