Pytorch 深度学习实践 第1讲
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 4.0]
y_data = [2.0, 4.0, 8.0]
def forward(x):
return x * w
def loss(x_val, y_val):
y_pred = forward(x_val)
return (y_pred - y_val) ** 2
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
print('w =', w)
l_sum = 0
for x, y in zip(x_data, y_data):
y_pred_val = forward(x)
loss_val = loss(x, y)
l_sum += loss_val
print('\t', x, y, y_pred_val, loss_val)
print('MSE=', l_sum/len(x_data))
w_list.append(w)
mse_list.append(l_sum/len(x_data))
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
作业:
# y = x * w + b
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
x_data = [1.0, 2.0, 4.0]
y_data = [2.0, 4.0, 8.0]
def forward(x):
return x * w + b
def loss(x_val, y_val):
y_pred = forward(x_val)
return (y_pred - y_val) ** 2
w = np.arange(0.0, 2.1, 0.1)
b = np.arange(0.0, 4.1, 0.1)
[w, b] = np.meshgrid(w, b)
print(len(w))
w_list = []
mse_list = []
l_sum = 0
# flag = True
for x, y in zip(x_data, y_data):
y_pred_val = forward(x)
# if flag:
# print(y_pred_val)
# flag = False
loss_val = loss(x, y)
l_sum += loss_val
# print('\t', x, y, y_pred_val, loss_val)
# print('MSE=', l_sum/len(x_data))
w_list.append(w)
mse_list.append(l_sum/len(x_data))
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(w, b, mse_list[0])
plt.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix