Pytorch 深度学习实践 第7讲
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:, :-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, item):
return self.x_data[item], self.y_data[item]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0) # num_workers 多线程 影响运行速度
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
if __name__ == '__main__':
for epoch in range(100):
for i, data in enumerate(train_loader, 0):
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
print(epoch, i, loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
增加内容
1、将原始数据集分为训练集和测试集
2、对训练集进行批量梯度下降
3、评估测试集的准确率
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
raw_data = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)
class DiabetesDataset(Dataset):
def __init__(self, data, label):
self.len = data.shape[0]
self.x_data = torch.from_numpy(data)
self.y_data = torch.from_numpy(label)
def __getitem__(self, item):
return self.x_data[item], self.y_data[item]
def __len__(self):
return self.len
train_dataset = DiabetesDataset(Xtrain, Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=2) # num_workers 多线程
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 2)
self.linear4 = torch.nn.Linear(2, 1)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.sigmoid(self.linear3(x))
x = self.sigmoid(self.linear4(x))
return x
model = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
train_loss = 0
count = 0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
train_loss += loss.item()
loss.backward()
optimizer.step()
optimizer.zero_grad()
count = i
if epoch%2000 == 1999:
print('train loss:', train_loss/count, end=',')
def test():
with torch.no_grad():
y_pred = model(Xtest)
y_pred_label = torch.where(y_pred>=0.5, torch.tensor([1.0]), torch.tensor([0.0]))
acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.shape[0]
print("test acc:", acc)
if __name__ == '__main__':
for epoch in range(50000):
print(epoch)
train(epoch)
if epoch%2000 == 1999:
test()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix