Pytorch 深度学习实践 第12讲

import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import gzip
import csv
import time
import math
import matplotlib.pyplot as plt
import numpy as np


# prepare dataset
class NameDataset(Dataset):
    def __init__(self, is_train_set):
        filename = './dataset/names_train.csv.gz' if is_train_set else './dataset/names_test.csv.gz'
        with gzip.open(filename, 'rt') as f:  # r表示只读,从文件头开始 t表示文本模式
            reader = csv.reader(f)
            rows = list(reader)
        self.names = [row[0] for row in rows]
        self.len = len(self.names)
        self.countries = [row[1] for row in rows]

        self.country_list = list(sorted(set(self.countries)))
        self.country_dict = self.getCountryDict()
        self.country_num = len(self.country_list)

    def __getitem__(self, item):  # 根据索引拿到的是 名字,国家的索引
        return self.names[item], self.country_dict[self.countries[item]]

    def __len__(self):
        return self.len

    def getCountryDict(self):
        country_dict = dict()
        for idx, country_name in enumerate(self.country_list, 0):
            country_dict[country_name] = idx
        return country_dict

    def idx2country(self, index):
        return self.country_list[index]

    def getCountriesNum(self):
        return self.country_num


HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 50
N_CHARS = 128  # 这个是为了构造嵌入层

trainSet = NameDataset(is_train_set=True)
trainLoader = DataLoader(trainSet, batch_size=BATCH_SIZE, shuffle=True)
testSet = NameDataset(is_train_set=False)
testLoader = DataLoader(testSet, batch_size=BATCH_SIZE, shuffle=True)

N_COUNTRY = trainSet.getCountriesNum()


# contruct model
class RNNClassifier(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
        super(RNNClassifier, self).__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.n_directions = 2 if bidirectional else 1  # 使用双向的GRU

        # 嵌入层(𝑠𝑒𝑞𝐿𝑒𝑛, 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒) --> (𝑠𝑒𝑞𝐿𝑒𝑛, 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, hidden_size)
        self.embedding = torch.nn.Embedding(input_size, hidden_size)
        self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
        self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)

    def _init_hidden(self, batch_size):
        hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size)
        return hidden

    def forward(self, input, seq_lengths):
        # input shape : B x S -> S x B
        input = input.t()
        batch_size = input.size(1)
        hidden = self._init_hidden(batch_size)
        embedding = self.embedding(input)

        # pack them up
        gru_input = torch.nn.utils.rnn.pack_padded_sequence(embedding, seq_lengths)
        output, hidden = self.gru(gru_input, hidden)
        if self.n_directions == 2:
            hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)
        else:
            hidden_cat = hidden[-1]
        fc_output = self.fc(hidden_cat)
        return fc_output


# data --> tensor
def name2list(name):
    arr = [ord(c) for c in name]
    return arr, len(arr)


def make_tensors(names, countries):
    sequences_and_lengths = [name2list(name) for name in names]
    name_sequences = [s1[0] for s1 in sequences_and_lengths]
    seq_lengths = torch.LongTensor([s1[1] for s1 in sequences_and_lengths])
    countries = countries.long()

    # make tensor of name, BatchSize * seqLen
    # 他这里补零的方式先将所有的0 Tensor给初始化出来,然后在每行前面填充每个名字
    seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()
    for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0):
        seq_tensor[idx, :seq_len] = torch.LongTensor(seq)

    # sort by length to use pack_padded_sequence
    # 将名字长度降序排列,并且返回降序之后的长度在原tensor中的小标perm_idx
    seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)
    # 这个Tensor中的类似于列表中切片的方法神奇啊,直接返回下标对应的元素,相等于排序了
    seq_tensor = seq_tensor[perm_idx]
    countries = countries[perm_idx]

    # 返回排序之后名字Tensor,排序之后的名字长度Tensor,排序之后的国家名字Tensor
    return seq_tensor, seq_lengths, countries


# train
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)


def trainModel():
    def time_sinze(since):
        s = time.time() - since
        m = math.floor(s / 60)
        s -= m * 60
        return '%dm %ds' % (m, s)


    total_loss = 0
    for i, (names, countries) in enumerate(trainLoader, 1):
        inputs, seq_lengths, target = make_tensors(names, countries)

        output = classifier(inputs, seq_lengths)
        # print("Shape:", output.shape, target.shape)
        # 注意输出和目标的维度:Shape: torch.Size([256, 18]) torch.Size([256])
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        if i % 10 == 0:
            print(f'[{time_sinze(start)}] Epoch {epoch} ', end='')
            print(f'[{i * len(inputs)}/{len(trainSet)}] ', end='')
            print(f'loss={total_loss / (i * len(inputs))}')
    return total_loss


def testModel():
    correct = 0
    total = len(testSet)
    print("evaluating trained model ... ")
    with torch.no_grad():
        for i, (names, countries) in enumerate(testLoader):
            inputs, seq_lengths, target = make_tensors(names, countries)
            output = classifier(inputs, seq_lengths)
            # 注意这个keepdim的使用,为了直接和target计算loss
            pred = output.max(dim=1, keepdim=True)[1]
            # 注意这个view_as 和 eq
            correct += pred.eq(target.view_as(pred)).sum().item()

        percent = '%.2f' % (100 * correct / total)
        print(f'Test set: Accuracy {correct}/{total} {percent}%')

    return correct / total


start = time.time()
print("Training for %d epochs..." % N_EPOCHS)
acc_list = []
for epoch in range(1, N_EPOCHS + 1):
    trainModel()
    acc = testModel()
    print('#'*50)
    acc_list.append(acc)


# visulation
epoch = np.arange(1, len(acc_list)+1)
acc_list = np.array(acc_list)
plt.plot(epoch, acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()

posted @ 2021-12-28 10:08  小Aer  阅读(4)  评论(0编辑  收藏  举报  来源