训练集和测试集是分开降维还是整体降维?
线性降维 | 非线性降维 |
---|---|
PCA (无监督) | LLE(局部线性嵌入) |
LDA(有监督) | Kernel-PCA(核主成份分析) |
对于线性方法(例如PCA) 而言, 它旨在寻找一个高维空间到低维空间的映射矩阵或映射关系, 当映射矩阵找到后便可直接将其应用到其他数据集进行降维(通俗点理解就是直接套用矩阵公式得到降维结果),因此,这种降维方式下可以单独降维;(当然,也可以整体降维)
而非线性方法(例如LLE) 则需要在保持某种局部结构的条件下实现数据的整体降维, 此时需要所有的数据集合到一起然后才能实现数据降维。
另外说一下,对于PCA来说,降维之后的特征不是原来特征的提取,而是对特征的一种线性组合,特征已经发生了变化。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix