摘要: 到目前为止,我们只讨论了具有一个单向隐藏层的循环神经网络。 其中,隐变量和观测值与具体的函数形式的交互方式是相当随意的。 只要交互类型建模具有足够的灵活性,这就不是一个大问题。 然而,对一个单层来说,这可能具有相当的挑战性。 之前在线性模型中,我们通过添加更多的层来解决这个问题。 而在循环神经网络中 阅读全文
posted @ 2023-11-14 15:43 Yohoc 阅读(40) 评论(0) 推荐(0)
摘要: 长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题。 解决这一问题的最早方法之一是长短期存储器(long short-term memory,LSTM)(Hochreiter and Schmidhuber, 1997)。 它有许多与门控循环单元( 9.1节)一样的属性。 有趣的是,长短期记 阅读全文
posted @ 2023-11-14 15:10 Yohoc 阅读(208) 评论(0) 推荐(0)
摘要: 在 8.7节中, 我们讨论了如何在循环神经网络中计算梯度, 以及矩阵连续乘积可以导致梯度消失或梯度爆炸的问题。 下面我们简单思考一下这种梯度异常在实践中的意义: 我们可能会遇到这样的情况:早期观测值对预测所有未来观测值具有非常重要的意义。 考虑一个极端情况,其中第一个观测值包含一个校验和, 目标是在 阅读全文
posted @ 2023-11-14 11:21 Yohoc 阅读(178) 评论(0) 推荐(0)