机器学习——循环神经网络的实现

独热编码

回想一下,在train_iter中,每个词元都表示为一个数字索引, 将这些索引直接输入神经网络可能会使学习变得困难。 我们通常将每个词元表示为更具表现力的特征向量。 最简单的表示称为独热编码(one-hot encoding), 它在 3.4.1节中介绍过。

简言之,将每个索引映射为相互不同的单位向量: 假设词表中不同词元的数目为N(len(vocab))词元索引的范围为0到N-1。如果词元的索引是整数i ,那么我们将创建一个长度为N的全0向量, 并将第i处的元素设置为1。 此向量是原始词元的一个独热向量。 索引为0和2独热向量如下所示:<br />

F.one_hot(torch.tensor([0, 2]), len(vocab))
tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0]])

我们每次采样的小批量数据形状是二维张量: (批量大小,时间步数)。 one_hot函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab))。 我们经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出。 这将使我们能够更方便地通过最外层的维度, 一步一步地更新小批量数据的隐状态。

X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
torch.Size([5, 2, 28])

 

初始化模型参数

接下来,我们初始化循环神经网络模型的模型参数。 隐藏单元数num_hiddens是一个可调的超参数。 当训练语言模型时,输入和输出来自相同的词表。 因此,它们具有相同的维度,即词表的大小。

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01

    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

 

循环神经网络模型

 定义了所有需要的函数之后,接下来我们创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数。

class RNNModelScratch: #@save
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)

 让我们检查输出是否具有正确的形状。 例如,隐状态的维数是否保持不变。

num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape 
(torch.Size([10, 28]), 1, torch.Size([2, 512]))

 

预测

让我们首先定义预测函数来生成prefix之后的新字符, 其中的prefix是一个用户提供的包含多个字符的字符串。 在循环遍历prefix中的开始字符时, 我们不断地将隐状态传递到下一个时间步,但是不生成任何输出。 这被称为预热(warm-up)期, 因为在此期间模型会自我更新(例如,更新隐状态), 但不会进行预测。 预热期结束后,隐状态的值通常比刚开始的初始值更适合预测, 从而预测字符并输出它们。(虽然在理论上可以在预测时同时顺便进行状态更新,但在实际应用中,预热器可以提前进行状态更新,以便在预测时更快地生成结果。)

def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])

 现在我们可以测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符。 鉴于我们还没有训练网络,它会生成荒谬的预测结果。

predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())、
'time traveller aaaaaaaaaa'

 

梯度裁剪

裁剪梯度是优化算法中一种常用的技术,用于控制梯度的大小,以避免梯度爆炸(梯度过大)或梯度消失(梯度过小)的问题。其中,将梯度投影回给定半径的球是一种流行的替代方案,下面我来详细解释一下:

  1. 裁剪梯度的概念: 在深度学习中,参数更新通常是通过反向传播计算得到的梯度,梯度表示了损失函数关于参数的变化率。然而,有时梯度可能会非常大,导致参数更新过大,这可能会使模型不稳定甚至无法收敛。相反,梯度过小可能会导致训练过慢,或者陷入局部最优解。为了避免这些问题,我们可以对梯度进行裁剪,即限制梯度的范数。

  2. 将梯度投影回给定半径的球: 这种方法的思想是,当梯度的范数(或长度)超过了一个指定的阈值(例如,给定半径),我们可以按比例缩放梯度向量,使其重新落在以原点为圆心、给定半径为半径的球面上。这样做可以保证梯度的范数不会超过给定的阈值,同时保持了梯度的方向。具体来说,如果梯度的范数超过了给定的阈值,我们可以按如下方式进行操作:

    • 计算当前梯度的范数。
    • 如果梯度的范数超过了给定阈值,我们将梯度向量缩放至与给定半径相切。

这种方法的好处在于,它可以有效地控制梯度的大小,从而提高训练的稳定性,同时避免出现梯度爆炸或梯度消失的问题。在实际的深度学习训练中,对于一些梯度范围较大的情况,采用梯度裁剪的技术能够帮助模型更好地学习并取得更好的性能。

def grad_clipping(net, theta):  #@save
    """裁剪梯度"""
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

 

训练

在训练模型之前,让我们定义一个函数在一个迭代周期内训练模型。 它与我们训练 3.6节模型的方式有三个不同之处。

  1. 序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。

  2. 我们在更新模型参数之前裁剪梯度。 这样的操作的目的是,即使训练过程中某个点上发生了梯度爆炸,也能保证模型不会发散。

  3. 我们用困惑度来评价模型。如 8.4.4节所述, 这样的度量确保了不同长度的序列具有可比性。

具体来说,当使用顺序分区时, 我们只在每个迭代周期的开始位置初始化隐状态。 由于下一个小批量数据中的第i个子序列样本 与当前第i个子序列样本相邻, 因此当前小批量数据最后一个样本的隐状态, 将用于初始化下一个小批量数据第一个样本的隐状态。 这样,存储在隐状态中的序列的历史信息 可以在一个迭代周期内流经相邻的子序列。 然而,在任何一点隐状态的计算, 都依赖于同一迭代周期中前面所有的小批量数据, 这使得梯度计算变得复杂。为了降低计算量,在处理任何一个小批量数据之前, 我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。

当使用随机抽样时,因为每个样本都是在一个随机位置抽样的, 因此需要为每个迭代周期重新初始化隐状态。 与 3.6节中的 train_epoch_ch3函数相同,updater是更新模型参数的常用函数。 它既可以是从头开始实现的d2l.sgd函数, 也可以是深度学习框架中内置的优化函数。

#@save
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期(定义见第8章)"""
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
        y = Y.T.reshape(-1)#Y:(批量大小,时间步长)
        X, y = X.to(device), y.to(device) #y:(批量大小*时间步长) 
        y_hat, state = net(X, state) #y_hat:(批量大小*时间步长,词表大小)
        l = loss(y_hat, y.long()).mean() #loss:(批量大小*时间步长)
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel()) #y张量中的元素个数就是词元个数
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """训练模型(定义见第8章)"""
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

 

简洁实现

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) 
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

 我们使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)。

state = torch.zeros((1, batch_size, num_hiddens))
state.shape
torch.Size([1, 32, 256])

通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。 需要强调的是,rnn_layer的“输出”(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。

X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
(torch.Size([35, 32, 256]), torch.Size([1, 32, 256]))

与 8.5节类似, 我们为一个完整的循环神经网络模型定义了一个RNNModel类。 注意,上面定义的nn.RNN(rnn_layer)只包含隐藏的循环层,我们还需要创建一个单独的输出层。

#@save
class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

 

总结

  • 我们可以训练一个基于循环神经网络的字符级语言模型,根据用户提供的文本的前缀生成后续文本。

  • 一个简单的循环神经网络语言模型包括输入编码、循环神经网络模型和输出生成。

  • 循环神经网络模型在训练以前需要初始化状态,不过随机抽样和顺序划分使用初始化方法不同。

  • 当使用顺序划分时,我们需要分离梯度以减少计算量。

  • 在进行任何预测之前,模型通过预热期进行自我更新(例如,获得比初始值更好的隐状态)。

  • 梯度裁剪可以防止梯度爆炸,但不能应对梯度消失。

 

posted @ 2023-11-12 14:03  Yohoc  阅读(45)  评论(0编辑  收藏  举报