机器学习——线性回归

回归

 

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

 

在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。 但不是所有的预测都是回归问题。 在后面的章节中,我们将介绍分类问题。分类问题的目标是预测数据属于一组类别中的哪一个。

 

线性回归

线性回归(linear regression)可以追溯到19世纪初, 它在回归的各种标准工具中最简单而且最流行。 线性回归基于几个简单的假设: 首先,假设自变量和因变量之间的关系是线性的, 即可以表示为中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

为了解释线性回归,我们举一个实际的例子: 我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。 为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。 这个数据集包括了房屋的销售价格、面积和房龄。 在机器学习的术语中,该数据集称为训练数据集(training data set) 或训练集(training set)。 每行数据(比如一次房屋交易相对应的数据)称为样本(sample), 也可以称为数据点(data point)或数据样本(data instance)。 我们把试图预测的目标(比如预测房屋价格)称为标签(label)或目标(target)。 预测所依据的自变量(面积和房龄)称为特征(feature)或协变量(covariate)。

 

线性模型

 

损失函数

在开始寻找最好的模型参数(model parameters)w和b之前, 我们还需要两个东西: (1)一种模型质量的度量方式; (2)一种能够更新模型以提高模型预测质量的方法。

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。损失函数(loss function)能够量化目标的实际值与预测值之间的差距。 通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。

回归问题中最常用的损失函数是平方误差函数。

 常数1/2不会带来本质的差别,但这样在形式上稍微简单一些 (因为当我们对损失函数求导后常数系数为1)。

 

梯度下降

 

即使在我们无法得到解析解的情况下,我们仍然可以有效地训练模型。 

 

本书中我们用到一种名为梯度下降(gradient descent)的方法, 这种方法几乎可以优化所有深度学习模型。 它通过不断地在损失函数递减的方向上更新参数来降低误差。

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值) 关于模型参数的导数(在这里也可以称为梯度)。 但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。 因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本, 这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

 

 

 

⚠️即使我们的函数确实是线性的且无噪声,这些参数估计值w和b也不会使损失函数真正地达到最小值。 因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内非常精确地达到最小值

线性回归恰好是一个在整个域中只有一个最小值的学习问题。 但是对像深度神经网络这样复杂的模型来说,损失平面上通常包含多个最小值。 深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集上的损失达到最小。 事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失, 这一挑战被称为泛化(generalization)

 

 

矢量化加速

1. 训练模型时,我们通常使用小批量数据(mini-batch),也就是同时处理多样本,而不是一次一个样本。

2. 为了处理小批量,需要使用矢量化计算(vectorized computation),也就是对整个批量的样本进行矩阵运算。

3. 使用矢量化计算的优点是可以利用线性代数库(如NumPy)的优化,比在Python里用for循环要高效。

4. 线性代数库或者GPU并行计算时,对大规模向量化运算是经过优化的,可以并行处理。但在Python for循环中,计算是顺序串行的。

5. 所以在模型训练的时候,我们要尽量使用矢量化计算,调用线性代数库的矩阵运算,而不是手写低效的Python for循环,这样可以利用并行计算加速训练。

6. 采用矢量化计算可以显著提高计算效率,使我们可以处理更大规模的数据集和模型。

总之,矢量化计算可以帮助我们更高效地处理小批量训练,充分利用线性代数库的优化,从而加速模型的训练过程。

 

 

从线性回归到神经网络

在下图中,我们将线性回归模型描述为一个神经网络。 需要注意的是,该图只显示连接模式,即只显示每个输入如何连接到输出,隐去了权重和偏置的值。

我们可以将线性回归模型视为仅由单个人工神经元组成的神经网络,或称为单层神经网络。

对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连, 我们将这种变换( 上图中的输出层) 称为全连接层(fully-connected layer)或称为稠密层(dense layer)。 

 

posted @ 2023-10-25 10:42  Yohoc  阅读(17)  评论(0编辑  收藏  举报