贝叶斯网的推理模式
贝叶斯网
下图中的有向无环图
就是一个贝叶斯网络。
图中一共有5个随机变量:
- Difficulty:表示一门课程的难度
d0 表示简单,d1 表示难
- Intelligence:表示一个学生的智商
i0 表示智商一般,i1 表示智商很高
- Grade:某门课程考试的成绩
g1(A) ,g2(B) ,g3(C) 分别表示成绩为A,B,C(A表示成绩最好)
- SAT:SAT考试成绩
s0 表示低分,s1 表示高分
- Letter:获得推荐信
l0 表示获得一般的推荐信,l1 表示获得很好的推荐信
推理模式
所谓推理模式
(Reasoning Patterns),就是根据已知量
来推断未知量
。根据推理思路不同,将推理模式分为下面几种。
- Causal Reasoning(
因果推理
) - Evidential Reasoning(
证据推理
) - Intercausal Reasoning(
因果间推理
)
因果推理
例子:我们想根据贝叶斯网,推断某个学生George从教课程Econ101的教授那里获得一份好推荐信的概率(
已知:对学生George和课程Econ101一无所知的情况下,
推断:
(1)若在已知的基础上,我们还知道学生George不太聪明(
(2)若在已知和(1)的基础上,我们还知道课程Econ101比较简单(
这类可以根据贝叶斯图中“顺流而下”的推断,就叫因果推理
。所谓“顺流而下”,就是顺着有向图的方向推理(已知量
和未知量
是因果关系,并且已知量
是未知量
的因)。从推论(1)中,可以看出已知量
(I)是未知量
(L)的因;从推论(1)中,可以看出已知量
(I,D)是未知量
(L)的因。
证据推理
因果推理
是顺着有向图的方向推理,而证据推理
是逆着有向图方向推理。已知量
和未知量
是因果关系,并且已知量
是未知量
的果。
例子1
要求:推断课程是很难课程的概率。
已知:对其它信息一无所知的前提下,我们知道课程Econ101是一门很难课程的概率为
推断:若在已知的基础上,我们还知道学生George在课程Econ101上的考试成绩很差(
例子2
要求:推断学生智商很高的概率。
已知:对其它信息一无所知的前提下,我们知道学生智商很高的概率为
推断:若在已知的基础上,我们还知道学生George在课程Econ101上的考试成绩很差(
注意在这两个例子中,都是逆着有向图的箭头进行推理。
因果间推理
如下图,推理关系超越了有向图的某条“流”。
例子:推断学生智商很高的概率。
已知:对其它信息一无所知的前提下,我们知道学生智商很高的概率为
推断:
(1)若在已知的基础上,我们还知道学生George在课程Econ101上的考试成绩很差(
(2)若在(1)的基础上,我们还知道课程Econ101是一门比较难的课程(
参考
- 概率图模型:原理与技术。作者:Daphne Koller
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构