100-flink 报错排查小本子

1、关键字:InvalidTypesException,'Collector' are missing , hints by using the returns(...) method

org.apache.flink.api.common.functions.InvalidTypesException: The generic type parameters of 'Collector' are missing. 
In many cases lambda methods don't provide enough information for automatic type extraction when Java generics are involved.
An easy workaround is to use an (anonymous) class instead that implements the 'org.apache.flink.api.common.functions.FlatMapFunction' interface.
Otherwise the type has to be specified explicitly using type information

 报这个错是因为泛型的类型擦除,根据你写的lambda表达式提供的类型信息不足以让java自动去返回你要的类型,可以用return()函数来解决

报错的代码如下:

 DataStream<Tuple2<String, Integer>> wordCounts = text
                .flatMap((FlatMapFunction<String, Tuple2<String, Integer>>) (value, out) -> {
                    for (String word : value.split("\\s")) {
                        out.collect(Tuple2.of(word, 1));
                    }
                });

修改:使用returns 函数(不好用),或者不要使用lambda表达式,匿名内部类也很香,读起来不费劲

SingleOutputStreamOperator<T> returns(TypeInformation<T> typeInfo)

修改后:

DataStream<Tuple2<String, Integer>> wordCounts = text.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String in, Collector out) throws Exception {
                for (String word : in.split("\\s+")) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });

 

2、关键字 no timestamp marker,ProcessingTime,DataStream.assignTimestampsAndWatermarks(...)

java.lang.RuntimeException: Record has Long.MIN_VALUE timestamp (= no timestamp marker).
Is the time characteristic set to 'ProcessingTime', or did you forget to call 'DataStream.assignTimestampsAndWatermarks(...)'?

这个是说提供的source数据里没有timestamp字段,但是却用的eventTime作为时间处理,需要改为processingTime或指定timestampAndWatermarks

报错代码:

DataStream text = env.socketTextStream("10.192.78.17", 9000, "\n");
        //首先将字符串数据解析成单词和次数(使用元组类型Tuple2<String, Integer>表示),第一个字段是单词,第二个字段是次数,次数初始值都设置成1
        DataStream<Tuple2<String, Integer>> wordCounts = text.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String in, Collector out) throws Exception {
                for (String word : in.split("\\s")) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        }).keyBy((KeySelector<Tuple2<String, Integer>, String>) tuple2 -> tuple2.f0)
          .window(TumblingEventTimeWindows.of(Time.seconds(5)))
          .sum(1);

解决:将TumblingEventTimeWindows改为TumblingProcessingTimeWindows(具体还是看业务)

3、关键字 Cannot resolve method 'aggregate(CountAgg, WindowResultFunction)'

报错代码:.aggregate函数位置

DataStream<ItemViewCount> windowedData = pvData
                .keyBy(new KeySelector<UserBehavior, Long>() {
                    @Override
                    public Long getKey(UserBehavior userBehavior) throws Exception {
                        return userBehavior.getItemId();
                    }
                })
                .window(SlidingEventTimeWindows.of(Time.minutes(60), Time.minutes(5)))
                .aggregate(new CountAgg(), new WindowResultFunction());
public class CountAgg implements AggregateFunction<UserBehavior, Long, Long> {

@Override
public Long createAccumulator() {
return 0L;
}

@Override
public Long add(UserBehavior userBehavior, Long acc) {
return acc + 1;
}

@Override
public Long getResult(Long acc) {
return acc;
}

@Override
public Long merge(Long acc1, Long acc2) {
return acc1 + acc2;
}
}

public class WindowResultFunction implements WindowFunction<Long, ItemViewCount, Tuple1<Long>, TimeWindow> {

/**
* @param key 窗口的主键,即 itemId
* @param window 窗口
* @param aggregateResult 聚合函数的结果,即 count 值
* @param collector 输出类型为 ItemViewCount
* @throws Exception
*/
@Override
public void apply(Tuple1<Long> key, TimeWindow window, Iterable<Long> aggregateResult, Collector<ItemViewCount> collector) throws Exception {
Long itemId = key.f0;
Long count = aggregateResult.iterator().next();
collector.collect(new ItemViewCount(itemId, window.getEnd(), count));
}

}

 这个报错提示很无语,lambda表达式有时候看不出是啥问题,最后查到问题是类型指定不对,WindowResultFunction的第三个类型Tuple1<Long>改为Long即可

public class WindowResultFunction implements WindowFunction<Long, ItemViewCount, Long, TimeWindow> {

    /**
     * @param key             窗口的主键,即 itemId
     * @param window          窗口
     * @param aggregateResult 聚合函数的结果,即 count 值
     * @param collector       输出类型为 ItemViewCount
     * @throws Exception
     */
    @Override
    public void apply(Long key, TimeWindow window, Iterable<Long> aggregateResult, Collector<ItemViewCount> collector) throws Exception {
        Long itemId = key;
        Long count = aggregateResult.iterator().next();
        collector.collect(new ItemViewCount(itemId, window.getEnd(), count));
    }

}

 4、关键字 TypeExtractor TimestampedFileInputSplit  POJO fields

20:48:25,426 INFO org.apache.flink.api.java.typeutils.TypeExtractor [] - class org.apache.flink.streaming.api.functions.source.TimestampedFileInputSplit does not contain a setter for field modificationTime
20:48:25,431 INFO org.apache.flink.api.java.typeutils.TypeExtractor [] - Class class org.apache.flink.streaming.api.functions.source.TimestampedFileInputSplit cannot be used as a POJO type because not all fields are valid POJO fields, and must be processed as GenericType. Please read the Flink documentation on "Data Types & Serialization" for details of the effect on performance.

这个不是error,参考stackoverflow的一个回复:

The logs that you share do not show an error. The logs are on INFO level and no exception is thrown (at least not in the provided logs).

The log entry just says that the class TimestampedFileInputSplit cannot be treated as a POJO. In general this message indicates that the performance is not optimal but in this particular case it is not a problem.

 5、关键字:和第三个差不多,泛型问题引起

process(new TopNHotItems(3));  // 求点击量前3名的商品

红色波浪线提示can't resolve method process(xxx),TopNHotItems类源码如下:

public class TopNHotItems extends KeyedProcessFunction<Tuple, ItemViewCount, String> {

    private final int topSize;

    public TopNHotItems(int topSize) {
        this.topSize = topSize;
    }

    /**
     * 用于存储商品与点击数的状态,待收齐同一个窗口的数据后,再触发 TopN 计算
     */
    private ListState<ItemViewCount> itemState;

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        // 状态的注册
        ListStateDescriptor<ItemViewCount> itemsStateDesc = new ListStateDescriptor<>(
                "itemState-state",
                ItemViewCount.class);
        itemState = getRuntimeContext().getListState(itemsStateDesc);
    }

    @Override
    public void processElement(
            ItemViewCount input,
            Context context,
            Collector<String> collector) throws Exception {

        // 每条数据都保存到状态中
        itemState.add(input);
        // 注册 windowEnd+1 的 EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所有商品数据
        context.timerService().registerEventTimeTimer(input.windowEnd + 1);
    }

    @Override
    public void onTimer(
            long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
        // 获取收到的所有商品点击量
        List<ItemViewCount> allItems = new ArrayList<>();
        for (ItemViewCount item : itemState.get()) {
            allItems.add(item);
        }
        // 提前清除状态中的数据,释放空间
        itemState.clear();
        // 按照点击量从大到小排序
        allItems.sort(new Comparator<ItemViewCount>() {
            @Override
            public int compare(ItemViewCount o1, ItemViewCount o2) {
                return (int) (o2.viewCount - o1.viewCount);
            }
        });
        // 将排名信息格式化成 String, 便于打印
        StringBuilder result = new StringBuilder();
        result.append("====================================\n");
        result.append("时间: ").append(new Timestamp(timestamp - 1)).append("\n");
        for (int i = 0; i < topSize; i++) {
            ItemViewCount currentItem = allItems.get(i);
            // No1:  商品ID=12224  浏览量=2413
            result.append("No").append(i).append(":")
                    .append("  商品ID=").append(currentItem.itemId)
                    .append("  浏览量=").append(currentItem.viewCount)
                    .append("\n");
        }
        result.append("====================================\n\n");

        out.collect(result.toString());
    }
}

解决方法:KeyedProcessFunction<Tuple, ItemViewCount, String>第一个泛型需要改为Long类型


6、关键字  kafka offset checkpoint

16:49:45,148 WARN  org.apache.flink.streaming.connectors.kafka.internals.KafkaFetcher [] - 
Committing offsets to Kafka takes longer than the checkpoint interval. Skipping commit of previous offsets because newer complete checkpoint offsets are available.
This does not compromise Flink's checkpoint integrity.

//todo  待解决,应该是kafka参数配置问题

7、关键字:json classPath

Could not find any factory for identifier 'json' that implements 'org.apache.flink.table.factories.DeserializationFormatFactory' in the classpath
原因:缺少flink配套的json包,加上这个jar
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-json</artifactId>
    <version>${flink.version}</version>
</dependency>

 8、关键字:InvalidFieldReferenceException   field expression  GenericType

Exception in thread "main" org.apache.flink.api.common.typeutils.CompositeType$InvalidFieldReferenceException:
Cannot reference field by field expression on GenericType<com.yb.api.beans.User>Field expressions are only supported on
POJO types,tuples, and case classes

代码片段:

//用KeySelector分组
KeyedStream<User, String> keyedStream = dataStream.keyBy(new KeySelector<User, String>() {
       @Override
       public String getKey(User user) throws Exception {
            return user.getId();
       }
    });
//滚动聚合函数max,这个函数输出时,max的字段会跟着变,其他的字段值永远是第一条记录的值,不会随着该字段变化
//可以使用maxBy,这样整条记录的输出是maxBy字段所在的那条记录
SingleOutputStreamOperator<User> salary=
keyedStream.max("salary");
salary.print();
env.execute("maxSalary");

@Data
@AllArgsConstructor
public class User{

private String id;
private String company;
private Double salary;

}

原因:我这个类属于上面提示的POJO类,POJO类需要无参构造方法,我用的lombok里的@AllargsConstructor,这是有参构造器,默认不会再自动

加上无参构造器

标准的POJO类的要求:

1. 所有成员变量都是私有的,用private修饰

2. 每个成员变量都有对应的getter和setter

3. 有一个无参的构造方法

解决:加上@NoArgsConstructor

9、关键字:savepoint

"org.apache.flink.runtime.rest.handler.RestHandlerException: Config key [state.savepoints.dir] is not set. Property [targetDirectory] must be provided

这是我在使用rest API调用stop job接口时提示的报错信息,意思是没有配置state.savepoint.dir的值

因为我是手动触发job停止,手动停止则会触发savepoint生成,来保存停止那一刻的快照信息,方便后续重启时使用

解决:

修改flink-conf.yaml,配置state.savepoints.dir: file:///opt/flink-1.14.0/flink-savepoints  或(hdfs://nodeHost:port/flink-savepoints)

主意一定要file://   或 hdfs://  开头

10、Flink per-job模式,在checkpoint 到rocksdb 时候 报错 Too many open files   

分析:打开的文件数过多,linux限制最大是65536。RocksDB 没有设置,默认允许打开5000,RocksDB打开的目录超过5000,所以报上面的错误

在flink-conf.yam加配置state.backend.rocksdb.files.open: 10000

posted @ 2021-11-12 16:44  鼠标的博客  阅读(3900)  评论(0编辑  收藏  举报