825. Friends Of Appropriate Ages

问题描述:

Some people will make friend requests. The list of their ages is given and ages[i] is the age of the ith person. 

Person A will NOT friend request person B (B != A) if any of the following conditions are true:

  • age[B] <= 0.5 * age[A] + 7
  • age[B] > age[A]
  • age[B] > 100 && age[A] < 100

Otherwise, A will friend request B.

Note that if A requests B, B does not necessarily request A.  Also, people will not friend request themselves.

How many total friend requests are made?

Example 1:

Input: [16,16]
Output: 2
Explanation: 2 people friend request each other.

Example 2:

Input: [16,17,18]
Output: 2
Explanation: Friend requests are made 17 -> 16, 18 -> 17.

Example 3:

Input: [20,30,100,110,120]
Output: 
Explanation: Friend requests are made 110 -> 100, 120 -> 110, 120 -> 100.

 

Notes:

  • 1 <= ages.length <= 20000.
  • 1 <= ages[i] <= 120.

 

解题思路:

一开始想到的是暴力破解法:即O(n2)的方法,但是显然OJ是不会让你过的:)

这里参考了votrubac 的解法

只能说我没有好好分析题意

遇见这种不等式没能去化简

 

由条件一: age[B] <= 0.5 * age[A] + 7     

和条件二: age[B] > age[A]                

可得 age[A]  < 0.5 * age[A] + 7

即 age[A] < 14

当年龄小于14时,是不可以发出好友请求的。

由于题目限定:  1 <= ages[i] <= 120.

我们可以将每个年龄出现的个数存入一个固定大小的数组(这将花费我们O(n)的时间)

而由于遍历固定大小的数组的时间是一定的,实际上是O(1)

 

根据我们上面得出的条件:

我们将从年龄为15的开始向后遍历

对当前年龄,我们又可以分为两种情况:

  1. 同龄人:cnt[i] * (cnt[i] - 1)

  2. 比TA小且满足要求的人:由j = 0.5 * i + 8开始向后遍历,且j < i

 

 

 

代码:

class Solution {
public:
    int numFriendRequests(vector<int>& ages) {
        int cnt[121] = {};
        int ret = 0;
        for(int a : ages){
            cnt[a]++;
        }
        for(int i = 15; i < 121; i++){
            if(cnt[i] == 0) continue;
            ret += cnt[i] * (cnt[i]-1);
            for(int j = 0.5 * i + 8; j < i; j++)
                ret += cnt[j]*cnt[i];
        }
        return ret;
    }
};

 

posted @ 2018-07-06 23:57  妖域大都督  阅读(135)  评论(0编辑  收藏  举报