Python的7种性能测试工具:timeit、profile、cProfile、line_profiler、memory_profiler、PyCharm图形化性能测试工具、objgraph

1.timeit:

 

 

>>> import timeit
>>> def fun():
    for i in range(100000):
        a = i * i

>>> timeit.timeit('fun()', 'from __main__ import fun', number=1)
0.02922706632834235
>>>  

 

 

timeit只输出被测试代码的总运行时间,单位为秒,没有详细的统计。

 

2.profile

profile:纯Python实现的性能测试模块,接口和cProfile一样。

 

>>> import profile
>>> def fun():
   for i in range(100000):
      a = i * i

      

>>> profile.run('fun()')
         5 function calls in 0.031 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.016    0.016 :0(exec)
        1    0.016    0.016    0.016    0.016 :0(setprofile)
        1    0.016    0.016    0.016    0.016 <pyshell#13>:1(fun)
        1    0.000    0.000    0.016    0.016 <string>:1(<module>)
        1    0.000    0.000    0.031    0.031 profile:0(fun())
        0    0.000             0.000          profile:0(profiler)


>>> 

 

 

ncall:函数运行次数

tottime: 函数的总的运行时间,减去函数中调用子函数的运行时间

第一个percall:percall = tottime / nclall 

cumtime:函数及其所有子函数调整的运行时间,也就是函数开始调用到结束的时间。

第二个percall:percall = cumtime / nclall 

 

3.cProfile

profile:c语言实现的性能测试模块,接口和profile一样。

 

>>> import cProfile
>>> def fun():
   for i in range(100000):
      a = i * i

      
>>> cProfile.run('fun()')
         4 function calls in 0.024 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.024    0.024    0.024    0.024 <pyshell#17>:1(fun)
        1    0.000    0.000    0.024    0.024 <string>:1(<module>)
        1    0.000    0.000    0.024    0.024 {built-in method exec}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}


>>> 

ncalls、tottime、percall、cumtime含义同profile。

 

 

4.line_profiler

安装:

pip install line_profiler

安装之后kernprof.py会加到环境变量中。

line_profiler可以统计每行代码的执行次数和执行时间等,时间单位为微妙。

测试代码:

C:\Python34\test.py


import time


@profile
def fun():
    a = 0
    b = 0
    for i in range(100000):
        a = a + i * i

    for i in range(3):
        b += 1
        time.sleep(0.1)

    return a + b


fun()

使用:

1.在需要测试的函数加上@profile装饰,这里我们把测试代码写在C:\Python34\test.py文件上.

2.运行命令行:kernprof -l -v C:\Python34\test.py

输出结果如下:

Total Time:测试代码的总运行时间 
Hits:表示每行代码运行的次数  
Time:每行代码运行的总时间  
Per Hits:每行代码运行一次的时间  
% Time:每行代码运行时间的百分比

 

5.memory_profiler:

memory_profiler工具可以统计每行代码占用的内存大小。  

安装:

pip install memory_profiler  

pip install psutil  

测试代码:  

同line_profiler。 

使用: 

1.在需要测试的函数加上@profile装饰
  
2.执行命令: python -m memory_profiler C:\Python34\test.py 
  
输出如下:

 

6.PyCharm图形化性能测试工具:

PyCharm提供了图像化的性能分析工具,使用方法见利用PyCharm的Profile工具进行Python性能分析

 

7.objgraph:

objgraph是一个实用模块,可以列出当前内存中存在的对象,可用于定位内存泄露。

objgraph需要安装:

 

pip install objgraph

 

 

使用方法这里不做描述,自行百度。

posted @ 2018-06-29 10:11  yaoyao9446  阅读(4553)  评论(0编辑  收藏  举报