yys

Maya插件开发,(多多练习英文吧~)

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

<Physics From Symmetry>

by Jakob Schwichtenberg

 

http://physicsfromsymmetry.com/

 

2.6 Invariance, Symmetry and Covariance

Covariance means something similar, but may not be confused with invariance. An equation is called covariant, if it takes the same #form# when the objects in it are transformed. For instance, if we have an equation

E1 = aA^2 + bBA + cC^4

and after the transformation this equation reads

E1 = aA'^2 + bB' A' + cC'^4

这里ABC表示一个坐标系下的一组变量;A'B'C' 表示另一个坐标系下的一组变量。




O(2) group: the group of all orthogonal 2 × 2 matrices. 二维旋转,保持向量长度不变。

The transformations of the group with det ( O ) = 1 are rotations. SO(2)

The transformations of the group with det ( O ) = -1 are reflections.


SO(2): O^T O = I, det(O) = 1


The unit complex numbers form a group, called U(1) under ordinary complex number multiplication:

U* U = 1 (U*表示U的共轭)


用矩阵表示二维旋转(SO(2))




用复数表示二维旋转(U(1))R^θ = e^iθ = cos(θ) + i sin (θ)

所以,如果定义i为矩阵:




则可将两者联系起来:







所以,认为SO(2)U(1)


三维情况:

用矩阵表示三维旋转(SO(3))








用四元数表示三维旋转:

(用单位四元数可以表示绕三维单位向量u旋转θ: q = cos(θ/2) + sin(θ/2) u

所以,如果定义矩阵ijk (SU(2), 注意不是U(2) )







则可将两者联系起来:



(其中,a=cos(θ/2), b=sin(θ/2) ux, c=sin(θ/2) uy, d=sin(θ/2) uz, ux^2 +uy^2 +uz^2=1)

所以,认为SO(3)SU(2)





其他:

- det(q)= a^2 + b^2 + c^2 + d^2. 满足U† U=1 and det(U)=1.

定义,绕u的旋转被表示为:q^−1 uq q是单位四元数)


- q†q = 1

The symbol † is called "dagger"it means: a† = (a*)^T .(为了让复数能够变成实数,发明了这个操作。给定复数qq†q 就得到了实数)


- SU(2) is called the double-cover of SO(3)

----------------------------------------------------------

3.4 Lie Algebras


Hermitian matrices








A matrix fulfilling the condition Ji† = Ji is called Hermitian

every Hermitian traceless 2 × 2 matrix can be written as a linear combination of Pauli matrices


Pauli matrices





注意,与SU(2)里的i, j, k相比,: σ1 = i j , σ2= i i , σ3= i k





 

 

为了去掉系数2,定义:

所以:


SU(1)对应单位环S1SU(2)对应S3





参考书:

E. Taylor and J. Wheeler - Spacetime Physics: Introduction to Special Relativity

• D. Fleisch - A Student’s Guide to Vectors and TensorsSR,张量)

• N. Jeevanjee - An Introduction to Tensors and Group Theory for Physicists (SR)

• A. Zee - Einstein Gravity in a nutshellSRGR

Herbert Goldstein - Classical Mechanics


See, for example, page 90 in Matthew Robinson. Symmetry and the Standard Model. Springer, 1st edition, August 2011. ISBN 978-1-4419-8267-4


See, for example, page 189 in Nadir Jeevanjee. An Introduction to Tensors and Group Theory for Physicists. Birkhaeuser, 1st edition, August 2011. ISBN 978- 0817647148


posted on 2016-05-18 20:17  yys  阅读(603)  评论(0编辑  收藏  举报