(CNN卷积神经网络)用pytorch实现多层感知机(MLP)(全连接神经网络FC)分类MNIST手写数字体的识别

1.导入必备的包

1 import torch 
2 import numpy as np 
3 from torchvision.datasets import mnist
4 from torch import nn
5 from torch.autograd import Variable
6 import matplotlib.pyplot as plt
7 import torch.nn.functional as F
8 from torch.utils.data import DataLoader
9 %matplotlib inline

2.定义mnist数据的格式变换

1 def data_transform(x):
2     x = np.array(x, dtype = 'float32') / 255
3     x = (x - 0.5) /0.5
4     x = x.reshape((-1, ))
5     x = torch.from_numpy(x)
6     return x

3.下载数据集,定义数据迭代器

1 trainset = mnist.MNIST('./dataset/mnist', train=True, transform=data_transform, download=True)
2 testset = mnist.MNIST('./dataset/mnist', train = False, transform=data_transform, download=True)】
3 train_data = DataLoader(trainset, batch_size=64, shuffle=True)
4 test_data = DataLoader(testset, batch_size=128, shuffle=False)

4.定义全连接神经网络(多层感知机)(若是CNN卷积神经网络,则在网络中添加几个卷积层即可)

 1 class MLP(nn.Module):
 2     def __init__(self):
 3         super(MLP, self).__init__()
      
       
      #CNN网络就是加几个卷积层,再修改fc1的输入为16*5*5
          #self.conv1 = nn.Conv2d(3, 6, 5)
          #self.pool = nn.MaxPool2d(2, 2)
          #self.conv2 = nn.Conv2d(6, 16, 5)    
 4         self.fc1 = nn.Linear(28*28, 500)
 5         self.fc2 = nn.Linear(500, 250)
 6         self.fc3 = nn.Linear(250, 125)
 7         self.fc4 = nn.Linear(125, 10)
 8         
 9     def forward(self, x):
10         x = F.relu(self.fc1(x))
11         x = F.relu(self.fc2(x))
12         x = F.relu(self.fc3(x))
13         x = self.fc4(x)
14         return x
15 
16 mlp = MLP()

5.定义损失函数和优化器

#交叉熵损失
1
criterion = nn.CrossEntropyLoss()
#随机梯度下降
2 optimizer = torch.optim.SGD(mlp.parameters(), 1e-3)

6.开始训练和测试

 1 losses = []
 2 acces = []
 3 eval_losses = []
 4 eval_acces = []
 5 
 6 for e in range(20):
 7     train_loss = 0
 8     train_acc = 0
    #开始训练
9 mlp.train() 10 for im, label in train_data: 11 im = Variable(im) 12 label = Variable(label) 13 # 前向传播 14 out = mlp(im) 15 loss = criterion(out, label) 16 # 反向传播 17 optimizer.zero_grad() 18 loss.backward() 19 optimizer.step() 20 # 记录误差 21 train_loss += loss.item() 22 # 计算分类的准确率 23 _, pred = out.max(1) 24 num_correct = (pred == label).sum().item() 25 acc = num_correct / im.shape[0] 26 train_acc += acc 27 28 losses.append(train_loss / len(train_data)) 29 acces.append(train_acc / len(train_data)) 30 # 在测试集上检验效果 31 eval_loss = 0 32 eval_acc = 0 33 mlp.eval() # 将模型改为预测模式 34 for im, label in test_data: 35 im = Variable(im) 36 label = Variable(label) 37 out = mlp(im) 38 loss = criterion(out, label) 39 # 记录误差 40 eval_loss += loss.item() 41 # 记录准确率 42 _, pred = out.max(1) 43 num_correct = (pred == label).sum().item() 44 acc = num_correct / im.shape[0] 45 eval_acc += acc 46 47 eval_losses.append(eval_loss / len(test_data)) 48 eval_acces.append(eval_acc / len(test_data)) 49 print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}' 50 .format(e, train_loss / len(train_data), train_acc / len(train_data), 51 eval_loss / len(test_data), eval_acc / len(test_data)))

7.测试结果

epoch: 0, Train Loss: 2.287240, Train Acc: 0.124150, Eval Loss: 2.265074, Eval Acc: 0.237540
epoch: 1, Train Loss: 2.237043, Train Acc: 0.385861, Eval Loss: 2.197773, Eval Acc: 0.524921
epoch: 2, Train Loss: 2.138911, Train Acc: 0.555487, Eval Loss: 2.050214, Eval Acc: 0.554292
epoch: 3, Train Loss: 1.901877, Train Acc: 0.563833, Eval Loss: 1.688784, Eval Acc: 0.592662
epoch: 4, Train Loss: 1.439467, Train Acc: 0.625483, Eval Loss: 1.178063, Eval Acc: 0.704905
epoch: 5, Train Loss: 1.022494, Train Acc: 0.745586, Eval Loss: 0.869467, Eval Acc: 0.778184
epoch: 6, Train Loss: 0.795575, Train Acc: 0.790528, Eval Loss: 0.702586, Eval Acc: 0.808347
epoch: 7, Train Loss: 0.665018, Train Acc: 0.816031, Eval Loss: 0.601074, Eval Acc: 0.831586
epoch: 8, Train Loss: 0.583082, Train Acc: 0.834588, Eval Loss: 0.535897, Eval Acc: 0.843750
epoch: 9, Train Loss: 0.527930, Train Acc: 0.848231, Eval Loss: 0.490443, Eval Acc: 0.857694
epoch: 10, Train Loss: 0.488764, Train Acc: 0.858925, Eval Loss: 0.456138, Eval Acc: 0.866396
epoch: 11, Train Loss: 0.459293, Train Acc: 0.868220, Eval Loss: 0.430784, Eval Acc: 0.873220
epoch: 12, Train Loss: 0.436398, Train Acc: 0.874117, Eval Loss: 0.413343, Eval Acc: 0.875890
epoch: 13, Train Loss: 0.418043, Train Acc: 0.880031, Eval Loss: 0.396967, Eval Acc: 0.880340
epoch: 14, Train Loss: 0.403195, Train Acc: 0.884029, Eval Loss: 0.385431, Eval Acc: 0.885483
epoch: 15, Train Loss: 0.390613, Train Acc: 0.887327, Eval Loss: 0.372552, Eval Acc: 0.889537
epoch: 16, Train Loss: 0.379947, Train Acc: 0.890275, Eval Loss: 0.363168, Eval Acc: 0.891812
epoch: 17, Train Loss: 0.370701, Train Acc: 0.893557, Eval Loss: 0.355597, Eval Acc: 0.894482
epoch: 18, Train Loss: 0.362498, Train Acc: 0.896572, Eval Loss: 0.348329, Eval Acc: 0.897844
epoch: 19, Train Loss: 0.354748, Train Acc: 0.898121, Eval Loss: 0.340272, Eval Acc: 0.899921

8.训练损失和训练精度曲线

1 plt.title('train loss')
2 plt.plot(np.arange(len(losses)), losses)

1 plt.plot(np.arange(len(acces)), acces)
2 plt.title('train acc')

 

posted @ 2018-11-17 18:03  yaowuyangwei521  阅读(6497)  评论(0编辑  收藏  举报