sklearn 中的 r2_score

R 2 R^2 R2不止一种定义方式,这里是scikit-learn中所使用的定义。

As such variance is dataset dependent, R² may not be meaningfully comparable across different datasets. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R² score of 0.0.

As such variance is dataset dependent, R² may not be meaningfully comparable across different datasets. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R² score of 0.0.

R 2 ( y , y ^ ) = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} R2(y,y^)=1i=1n(yiyˉ)2i=1n(yiy^i)2

y ˉ = 1 n ∑ i = 1 n y i \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i yˉ=n1i=1nyi

∑ i = 1 n ( y i − y ^ i ) 2 = ∑ i = 1 n ϵ i 2 \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \epsilon_i^2 i=1n(yiy^i)2=i=1nϵi2

from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
r2_score(y_true, y_pred)

y_true = [[0.5, 1], [-1, 1], [7, -6]]
y_pred = [[0, 2], [-1, 2], [8, -5]]
r2_score(y_true, y_pred, multioutput='variance_weighted')

y_true = [[0.5, 1], [-1, 1], [7, -6]]
y_pred = [[0, 2], [-1, 2], [8, -5]]
r2_score(y_true, y_pred, multioutput='uniform_average')

r2_score(y_true, y_pred, multioutput='raw_values')

r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
posted @ 2020-06-29 19:22  2021年的顺遂平安君  阅读(239)  评论(0编辑  收藏  举报