keras 学习笔记:从头开始构建网络处理 mnist

全文参考 《 基于 python 的深度学习实战》

 

import numpy as np
from keras.datasets import mnist

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D

(x_train, y_train), (x_test, y_test) = mnist.load_data()

print(x_train[0].shape)
print(y_train)

########################### x 处理 ##################################
# 将训练集合中的数字变成标准的四维张量形式(样本数量、长、宽、深(灰度图 1))
# 并将像素值变成浮点格式
width = 28
height = 28
depth = 1 x_train = x_train.reshape(x_train.shape[0], width, height, depth).astype('float32') x_test = x_test.reshape(x_test.shape[0], width, height, depth).astype('float32') # 归一化处理,将像素值控制在 0 - 1 x_train /= 255 x_test /= 255 classes = 10 ####################### y 处理 ####################################### # one host 编码 def tran_y(y): y_ohe = np.zeros(10) y_ohe[y] = 1 return y_ohe # 标签将 one-hot 编码重排 y_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))]) y_test_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_test))]) ###################### 搭建卷积神经网络 ############################### model = Sequential() # 添加卷积层,构造 64 个过滤器,过滤器范围 3x3x1, 过滤器步长为 1, 图像四周补一圈 0, 并用 relu 非线性变换 model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same', input_shape=(width, height, 1), activation='relu')) # 添加 Max_Pooling , 2 x 2 取最大值 model.add(MaxPooling2D(pool_size=(2, 2))) # 设立 Dropout , 将概率设为 0.5 model.add(Dropout(0.5)) #重复构造, 搭建神经网络 model.add(Conv2D(128, kernel_size=(3, 3), strides=(1,1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(256, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu')) model.add((MaxPooling2D(pool_size=(2, 2)))) model.add(Dropout(0.5)) # 将当前节点展平, 构造全连神经网络 model.add(Flatten()) # 构造全连接神经网络 model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='reul')) model.add(Dense(classes, activation='softmax')) ################################ 编译模型 ########################## # 一般,分类问题的损失函数才有交叉熵 (Cross Entropy) model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) ######################### 训练模型 ################################ model.fit(x_train, y_train_ohe, validation_data=(x_test, y_test_ohe), epochs=20, batch_size=128) ######################## 评价模型 ################################ scores = model.evaluate(x_test, y_test_ohe, verbose=0) ######################## 保持模型与权重 ################################ # 保持整个模型(包括结构、权重) model.save("mnist_model.h5")

 

posted on 2018-11-25 21:49  张居斜  阅读(294)  评论(0编辑  收藏  举报

导航