洛谷 1064 金明的预算方案
金明的预算方案——一道传说时依赖背包的题目,然而今天看了一眼发现其实分组背包就可以AC的。
导致此题难度下降的一个重要因素就是附件太少了!于是这个题最方便的做法就是重置物品,跑分组背包。
AC代码:
#include <iostream> #include <algorithm> #include <cstdio> using namespace std; int read() { int x = 0; int k = 1; char c = getchar(); while (c > '9' || c < '0') if (c == '-') c = getchar(), k = -1; else c = getchar(); while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return k * x; } short n, m; short z[70]; short v[70]; short c[70]; short val[70][70]; int cos[70][70]; short cnt[70]; int f[33000]; int main() { n = read(); m = read(); for (int i = 1; i <= m; ++i) c[i] = read(), v[i] = read(), z[i] = read(); int top = 0; short son[2], wic = 1; for (int i = 1; i <= m; ++i) if (z[i] == 0) { ++top; val[top][++cnt[top]] = v[i] * c[i]; cos[top][cnt[top]] = c[i]; for (int j = 1; j <= m; ++j) if (z[j] == i) { ++cnt[top]; val[top][cnt[top]] = v[i] * c[i] + c[j] * v[j]; cos[top][cnt[top]] = c[i] + c[j]; son[wic ^ 1] = j; wic ^= 1; } if (cnt[top] == 3) { ++cnt[top]; val[top][cnt[top]] = v[i] * c[i] + c[son[0]] * v[son[0]] + c[son[1]] * v[son[1]]; cos[top][cnt[top]] = c[i] + c[son[0]] + c[son[1]]; } } for (int i = 1; i <= top; ++i) for (int j = n; j >= 0; --j) for (int k = 1; k <= cnt[i]; ++k) if (j >= cos[i][k]) f[j] = max(f[j], f[j - cos[i][k]] + val[i][k]); cout << f[n]; }