类(传入的形参为非指针形式)-复数的实现
注意此处构造函数传入的参数为非指针形式,数据也是非指针形式。
#ifndef __MYCOMPLEX__ #define __MYCOMPLEX__ //定义了类——复数,作为示例,介绍了类的基本定义方式 //类以部分函数的声明 class complex; complex& __doapl (complex* ths, const complex& r); complex& __doami (complex* ths, const complex& r); complex& __doaml (complex* ths, const complex& r); //定义类complex:一般类会把数据作为private的,而将一些对外的接口函数作为public的 class complex { public: //构造函数,这个地方r和i是传入的形参,后面赋值给私有成员变量re和im了 complex (double r = 0, double i = 0): re (r), im (i) { } //操作符重载,扩展C++中的+=、-=、*=、/=运算符,使其可以应用在复数的运算中 complex& operator += (const complex&); complex& operator -= (const complex&); complex& operator *= (const complex&); complex& operator /= (const complex&); //获得复数的实部和虚部 double real () const { return re; } double imag () const { return im; } private: double re, im; //友元函数,在类外也可以直接访问private成员变量 friend complex& __doapl (complex *, const complex&); friend complex& __doami (complex *, const complex&); friend complex& __doaml (complex *, const complex&); }; //这个函数在类中声明为友元函数了 inline complex& __doapl (complex* ths, const complex& r) { ths->re += r.re; ths->im += r.im; return *ths; } inline complex& complex::operator += (const complex& r) { //this 是这个类本身,在使用中+=左边的对象就是this return __doapl (this, r); } inline complex& __doami (complex* ths, const complex& r) { ths->re -= r.re; ths->im -= r.im; return *ths; } inline complex& complex::operator -= (const complex& r) { return __doami (this, r); } inline complex& __doaml (complex* ths, const complex& r) { double f = ths->re * r.re - ths->im * r.im; ths->im = ths->re * r.im + ths->im * r.re; ths->re = f; return *ths; } inline complex& complex::operator *= (const complex& r) { return __doaml (this, r); } //上面的函数返回的都是引用,相当于直接返回了变量地址 //下面的函数返回的都不是引用,而是局部变量的拷贝 inline double imag (const complex& x) { return x.imag (); } inline double real (const complex& x) { return x.real (); } inline complex operator + (const complex& x, const complex& y) { return complex (real (x) + real (y), imag (x) + imag (y)); } inline complex operator + (const complex& x, double y) { return complex (real (x) + y, imag (x)); } inline complex operator + (double x, const complex& y) { return complex (x + real (y), imag (y)); } inline complex operator - (const complex& x, const complex& y) { return complex (real (x) - real (y), imag (x) - imag (y)); } inline complex operator - (const complex& x, double y) { return complex (real (x) - y, imag (x)); } inline complex operator - (double x, const complex& y) { return complex (x - real (y), - imag (y)); } inline complex operator * (const complex& x, const complex& y) { return complex (real (x) * real (y) - imag (x) * imag (y), real (x) * imag (y) + imag (x) * real (y)); } inline complex operator * (const complex& x, double y) { return complex (real (x) * y, imag (x) * y); } inline complex operator * (double x, const complex& y) { return complex (x * real (y), x * imag (y)); } complex operator / (const complex& x, double y) { return complex (real (x) / y, imag (x) / y); } inline complex operator + (const complex& x) { return x; } inline complex operator - (const complex& x) { return complex (-real (x), -imag (x)); } inline bool operator == (const complex& x, const complex& y) { return real (x) == real (y) && imag (x) == imag (y); } inline bool operator == (const complex& x, double y) { return real (x) == y && imag (x) == 0; } inline bool operator == (double x, const complex& y) { return x == real (y) && imag (y) == 0; } inline bool operator != (const complex& x, const complex& y) { return real (x) != real (y) || imag (x) != imag (y); } inline bool operator != (const complex& x, double y) { return real (x) != y || imag (x) != 0; } inline bool operator != (double x, const complex& y) { return x != real (y) || imag (y) != 0; } #include <cmath> inline complex polar (double r, double t) { return complex (r * cos (t), r * sin (t)); } inline complex conj (const complex& x) { return complex (real (x), -imag (x)); } inline double norm (const complex& x) { return real (x) * real (x) + imag (x) * imag (x); } #endif //__MYCOMPLEX__