pytorch构建自己的数据集

现在需要在json文件里面读取图片的URL和label,这里面可能会出现某些URL地址无效的情况。

python读取json文件

此处只需要将json文件里面的内容读取出来就可以了

with open("json_path",'r') ad load_f:
    load_dict = json.load(load_f)

json_path是json文件的地址,json文件里面的内容读取到load_dict变量中,变量类型为字典类型。

python通过URL打开图片

通过skimage获取URL图片是简单的方式。

from skimage import io
image = io.imread(img_src) # img_src是图片的URL
io.imshow(image)
io.show()

pytorch构建自己的数据集

pytorch中文网中有比较好的讲解: https://ptorch.com/news/215.html

加载图片预处理以及可视化见: https://oldpan.me/archives/pytorch-transforms-opencv-scikit-image

定义自己的数据集使用类 torch.utils.data.Dataset这个类,这个类中有三个关键的默认成员函数,__init__,__len__,__getitem__。

__init__类实例化应用,所以参数项里面最好有数据集的path,或者是数据以及标签保存的json、csv文件,在__init__函数里面对json、csv文件进行解析。

__len__需要返回images的数量。

__getitem__中要返回image和相对应的label,要注意的是此处参数有一个index,指的返回的是哪个image和label。

 

import torch
from torchvision import transforms 
import json
import os
from PIL import Image


class ProductDataset(torch.utils.data.Dataset):
    def __init__(self,json_path,data_path,transform = None,train = True):
        with open(json_path,'r') as load_f:
            self.json_dict = json.load(load_f)
        self.json_dict = self.json_dict["images"]
        self.train = train
        self.data_path = data_path
        self.transform = transform

    def __len__(self):
        return len(self.json_dict)

    def __getitem__(self,index):
        image_id = os.path.join(self.data_path + '/',str(self.json_dict[index]["id"]))
        image = Image.open(image_id)
        image = image.convert('RGB')
        label = int(self.json_dict[index]["class"])
        if self.transform:
            image = self.transform(image)
        if self.train:
            return image,label
        else:
            image_id = self.json_dict[index]["id"]
            return image,label,image_id


if __name__ == '__main__':
    val_dataset = ProductDataset('data/FullImageTrain.json','data/train',train=False,
                                transform=transforms.Compose([
                                    transforms.Pad(4),
                                    transforms.RandomResizedCrop(224),
                                    transforms.RandomHorizontalFlip(),
                                    transforms.ToTensor(),
                                    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
                                ]))
    kwargs = {'num_workers': 4, 'pin_memory': True}
    test_loader = torch.utils.data.DataLoader(dataset=val_dataset,
                                                batch_size=32,
                                                shuffle=False,
                                                **kwargs)

    print(val_dataset.__len__())
    count = 0
    for image,label,image_id in test_loader:
        print(image.shape,count)
        count += 1

 

关于transform,图像预处理的各个函数功能介绍如下:

torch.transforms是常见的图像变换,可以用Compose连接起来。

下面是Transforms on PIL Image:

transforms.CenterCrop(size):

size可以是一个像(h,w)的sequence,这样输出的是一个中心裁剪的(h,w)图像。

transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0):

随机更改图像的亮度,对比度和饱和度。

传递的参数是float型变量或者是tuple(元素是float型)型变量,如果是tuple型变量,第一个元素是min值,第二个元素是max值。

transforms.Grayscale(num_output_channels=1)

将Image转换为灰度值

transforms.Pad(padding, fill=0, padding_mode='constant')

padding这个参数,如果给定的是单个的值,那么会pad所有的边。

transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')

随机裁剪图片到给定尺寸

size如果是(h,w)这样的sequence,那么将剪出一个(h,w)大小的图片

transforms.RandomHorizontalFlip(p=0.5):

以给定的概率随机水平翻转给定的PIL图像。

transforms.RandomResizedCrop(size,scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)

将给定的图像随机裁剪为不同的大小和高宽比,然后缩放所裁剪的图像到指定大小。

 

该操作的含义:即使只是该物体的一部分,我们也认为这是该类物体。

scale为0.08到1的意思为裁剪的面积比例为0.08到1,注意是面积不是边,ratio是高宽比。
transforms.Resize(size, interpolation=2):

Resize给定的Image图像到指定大小。

size:给定图像大小

interpolation:差值方法,默认是PIL.Image.BILINEAR

下面是Transforms on torch.*Tensor:

transforms.Normalize(mean,var,inplace=False):

标准化图像,mean和var给定三个值的情况下,是分别对于RGB三个channel进行标准化。

 

posted @ 2019-04-05 10:41  阿刚的代码进阶之旅  阅读(5549)  评论(0编辑  收藏  举报