pytorch构建自己的数据集
现在需要在json文件里面读取图片的URL和label,这里面可能会出现某些URL地址无效的情况。
python读取json文件
此处只需要将json文件里面的内容读取出来就可以了
with open("json_path",'r') ad load_f: load_dict = json.load(load_f)
json_path是json文件的地址,json文件里面的内容读取到load_dict变量中,变量类型为字典类型。
python通过URL打开图片
通过skimage获取URL图片是简单的方式。
from skimage import io image = io.imread(img_src) # img_src是图片的URL io.imshow(image) io.show()
pytorch构建自己的数据集
pytorch中文网中有比较好的讲解: https://ptorch.com/news/215.html
加载图片预处理以及可视化见: https://oldpan.me/archives/pytorch-transforms-opencv-scikit-image
定义自己的数据集使用类 torch.utils.data.Dataset这个类,这个类中有三个关键的默认成员函数,__init__,__len__,__getitem__。
__init__类实例化应用,所以参数项里面最好有数据集的path,或者是数据以及标签保存的json、csv文件,在__init__函数里面对json、csv文件进行解析。
__len__需要返回images的数量。
__getitem__中要返回image和相对应的label,要注意的是此处参数有一个index,指的返回的是哪个image和label。
import torch from torchvision import transforms import json import os from PIL import Image class ProductDataset(torch.utils.data.Dataset): def __init__(self,json_path,data_path,transform = None,train = True): with open(json_path,'r') as load_f: self.json_dict = json.load(load_f) self.json_dict = self.json_dict["images"] self.train = train self.data_path = data_path self.transform = transform def __len__(self): return len(self.json_dict) def __getitem__(self,index): image_id = os.path.join(self.data_path + '/',str(self.json_dict[index]["id"])) image = Image.open(image_id) image = image.convert('RGB') label = int(self.json_dict[index]["class"]) if self.transform: image = self.transform(image) if self.train: return image,label else: image_id = self.json_dict[index]["id"] return image,label,image_id if __name__ == '__main__': val_dataset = ProductDataset('data/FullImageTrain.json','data/train',train=False, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])) kwargs = {'num_workers': 4, 'pin_memory': True} test_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=32, shuffle=False, **kwargs) print(val_dataset.__len__()) count = 0 for image,label,image_id in test_loader: print(image.shape,count) count += 1
关于transform,图像预处理的各个函数功能介绍如下:
torch.transforms是常见的图像变换,可以用Compose连接起来。
下面是Transforms on PIL Image:
transforms.CenterCrop(size):
size可以是一个像(h,w)的sequence,这样输出的是一个中心裁剪的(h,w)图像。
transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0):
随机更改图像的亮度,对比度和饱和度。
传递的参数是float型变量或者是tuple(元素是float型)型变量,如果是tuple型变量,第一个元素是min值,第二个元素是max值。
transforms.Grayscale(num_output_channels=1)
将Image转换为灰度值
transforms.Pad(padding, fill=0, padding_mode='constant')
padding这个参数,如果给定的是单个的值,那么会pad所有的边。
transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')
随机裁剪图片到给定尺寸
size如果是(h,w)这样的sequence,那么将剪出一个(h,w)大小的图片
transforms.RandomHorizontalFlip(p=0.5):
以给定的概率随机水平翻转给定的PIL图像。
transforms.RandomResizedCrop(size,scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)
将给定的图像随机裁剪为不同的大小和高宽比,然后缩放所裁剪的图像到指定大小。
该操作的含义:即使只是该物体的一部分,我们也认为这是该类物体。
scale为0.08到1的意思为裁剪的面积比例为0.08到1,注意是面积不是边,ratio是高宽比。
transforms.Resize(size, interpolation=2):
Resize给定的Image图像到指定大小。
size:给定图像大小
interpolation:差值方法,默认是PIL.Image.BILINEAR
下面是Transforms on torch.*Tensor:
transforms.Normalize(mean,var,inplace=False):
标准化图像,mean和var给定三个值的情况下,是分别对于RGB三个channel进行标准化。