tensorflow 的 models 模块非常有用,不仅实现了各种模型,也包括了 原作者 训练好的模型及其使用方法,本文 以 object detection 为例 来说明如何使用 训练好 的模型;
首先呢,还是建议 去 官网 看看使用方法,因为 tensorflow 的版本混乱,网上教程针对的版本各不相同,所以各种坑;
下面是正题,本文针对 windows 操作系统;
第一步:下载 models 模块,解压
https://github.com/tensorflow/models
第二步:安装 protoc
https://github.com/protocolbuffers/protobuf/releases 从这里下载,选择适合自己的版本;
下载后复制到 models 所在的文件夹下,解压,生成 bin、include;
将 bin 下的 protoc.exe 复制到 C:\Windows\System32 文件夹下;
cmd 运行 protoc,出现如下界面,说明安装成功;
第三步:编译 protoc
在 models/research 下运行 Windows PowerShell 【运行 PowerShell】
运行命令
protoc object_detection/protos/*.proto --python_out=.
运行完成后,检查 object_detection/protos 文件夹,如果每个 proto 文件都变成了 py 文件,表示编译成功
第四步:添加环境变量
添加这两个目录
...\models\research
...\models\research\slim
至于怎么添加,你可以用常规的设置 环境变量的方式,官方是 PYTHONPATH;
网上有 添加 .pth 文件,我实验未成功;
第五步:测试 API 是否安装成功
python object_detection/builders/model_builder_test.py
出现上图表示成功;
第六步:执行已经训练好的模型
执行 object_detection/object_detection_tutorial.ipynb 文件 【执行方法 我的博客】
或者自己写
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image # # This is needed to display the images. # %matplotlib inline # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") sys.path.append("../..") print(sys.path) # from utils import label_map_util # from utils import visualization_utils as vis_util from research.object_detection.utils import label_map_util from research.object_detection.utils import visualization_utils as vis_util # What model to download. MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017' MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 # download model # opener = urllib.request.URLopener() # print(DOWNLOAD_BASE + MODEL_FILE) # opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) # Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Loading label map label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # For the sake of simplicity we will use only 2 images: # image1.jpg # image2.jpg # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS. PATH_TO_TEST_IMAGES_DIR = 'test_images' TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3)] # Size, in inches, of the output images. IMAGE_SIZE = (12, 8) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # Definite input and output Tensors for detection_graph image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) Image.fromarray(image_np).save('%sob.jpg'%image_path) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np) plt.show()
参考资料:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md 官网
https://www.jianshu.com/p/6f3ea0d82fae 物体检测TensorFlow Object Detection API (一)安装
https://www.jb51.net/article/162968.htm windows10下安装TensorFlow Object Detection API的步骤
https://www.cnblogs.com/2dogslife/p/10264325.html Tensorflow Object Detection API 安装
https://blog.csdn.net/qq_38593211/article/details/82822162 TensorFlow Object Detection API 超详细教程和踩坑过程(安装)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)