spark 支持 shell 操作
shell 主要用于调试,所以简单介绍用法即可
支持多种语言的 shell
包括 scala shell、python shell、R shell、SQL shell 等
spark-shell 用于在 scala 的 shell 模式下操作 spark
pyspark 用于在 python 的 shell 模式下操作 spark
spark-sql 用于在 spark-sql 模式下运行 sql,后续会讲 sparkSQL
支持 3 种模式的 shell
local 模式、 standalone 模式、yarn模式
不同的模式需要指定 master
python 模式的 shell 命令
master 参数指定了运行模式
[root@hadoop10 spark]# bin/pyspark --help Usage: ./bin/pyspark [options] Options: --master MASTER_URL spark://host:port, mesos://host:port, yarn, # 设定 master,即在哪里运行 spark, # mesos://host:port一般不用;yarn需要把spark部署到yarn上 k8s://https://host:port, or local (Default: local[*]). # local 本地模式,local 表示单线程,local[num]表示num个进程, # local[*]表示服务器cpu是几核就是几个进程 --deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or on one of the worker machines inside the cluster ("cluster") (Default: client). --class CLASS_NAME Your application's main class (for Java / Scala apps). # 要执行的 class 类名 --name NAME A name of your application. --jars JARS Comma-separated list of jars to include on the driver and executor classpaths. --packages Comma-separated list of maven coordinates of jars to include # 逗号隔开的 maven 列表,给 当前会话 添加依赖 on the driver and executor classpaths. Will search the local maven repo, then maven central and any additional remote repositories given by --repositories. The format for the coordinates should be groupId:artifactId:version. --exclude-packages Comma-separated list of groupId:artifactId, to exclude while resolving the dependencies provided in --packages to avoid dependency conflicts. --repositories Comma-separated list of additional remote repositories to search for the maven coordinates given with --packages. --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place # 逗号隔开的 zip.文件列表,替代 PYTHONPATH 的作用, on the PYTHONPATH for Python apps. # 也就是说如果不设置 PYTHONPATH,就需要这个参数,才能导入 文件中的模块 --files FILES Comma-separated list of files to be placed in the working directory of each executor. File paths of these files in executors can be accessed via SparkFiles.get(fileName). --conf PROP=VALUE Arbitrary Spark configuration property. --properties-file FILE Path to a file from which to load extra properties. If not specified, this will look for conf/spark-defaults.conf. --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M). --driver-java-options Extra Java options to pass to the driver. --driver-library-path Extra library path entries to pass to the driver. --driver-class-path Extra class path entries to pass to the driver. Note that jars added with --jars are automatically included in the classpath. --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G). --proxy-user NAME User to impersonate when submitting the application. This argument does not work with --principal / --keytab. --help, -h Show this help message and exit. --verbose, -v Print additional debug output. --version, Print the version of current Spark. Cluster deploy mode only: --driver-cores NUM Number of cores used by the driver, only in cluster mode (Default: 1). Spark standalone or Mesos with cluster deploy mode only: --supervise If given, restarts the driver on failure. --kill SUBMISSION_ID If given, kills the driver specified. --status SUBMISSION_ID If given, requests the status of the driver specified. Spark standalone and Mesos only: --total-executor-cores NUM Total cores for all executors. Spark standalone and YARN only: --executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode, or all available cores on the worker in standalone mode) YARN-only: --queue QUEUE_NAME The YARN queue to submit to (Default: "default"). --num-executors NUM Number of executors to launch (Default: 2). If dynamic allocation is enabled, the initial number of executors will be at least NUM. --archives ARCHIVES Comma separated list of archives to be extracted into the working directory of each executor. --principal PRINCIPAL Principal to be used to login to KDC, while running on secure HDFS. --keytab KEYTAB The full path to the file that contains the keytab for the principal specified above. This keytab will be copied to the node running the Application Master via the Secure Distributed Cache, for renewing the login tickets and the delegation tokens periodically.
进入 python shell 模式
[root@hadoop10 spark]# bin/pyspark Python 2.7.12 (default, Oct 2 2019, 19:43:15) [GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2 Type "help", "copyright", "credits" or "license" for more information. 19/10/09 18:10:53 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.4.4 /_/ Using Python version 2.7.12 (default, Oct 2 2019 19:43:15) SparkSession available as 'spark'. # 自带 spark
shell 模式可以通过 http://192.168.10.10:4040 查看任务
shell 操作语法与 脚本 相同,示例如下
>>> distFile = sc.textFile('README.md') >>> distFile.map(lambda x: len(x)).reduce(lambda a, b: a + b) 3847 >>> distFile.count() 105
spark-submit 命令
spark-submit 命令 用于提交 spark 任务,执行 脚本文件,后面会以 python 为例进行讲解。
分类:
BD大数据-Spark
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人