验证曲线是调节学习器的参数的,学习曲线是用来调节训练样本大小的。
从理论上来讲,如果数据“同质”,当数据量到达一定程度时,学习器可以学到所有的“特征”,继续增加样本没有作用。
那么到底多少样本是合适的呢?
做个实验
逐渐增大训练样本量,同时判断训练集和测试集的准确率,看看会发生什么
1. 首先从训练集中拿出1个数据,训练模型,然后在该训练集(1个)和测试集上检验,发现在训练集上误差为0,在测试集上误差很大
2. 然后从训练集中拿出10个数据,训练模型,然后在该训练集(10个)和测试集上检验,发现在训练集上误差增大,在测试集上误差减小
3. 依次…
4. 直到拿出整个训练集,发现模型在训练集上误差越来越大,在测试集上误差越来越小
如图
把训练集大小作为x,误差作为y
训练集误差逐渐增大,测试集误差逐渐减小。
那必然相交或者有个最小距离,此时继续增加样本已然无用,此时模型已无法从样本上学到任何新的东西。
示例代码
import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, train_sizes=np.linspace(.1, 1.0, 5)): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv) plt.show()
输出
事实上,数据“同质”的可能性很小,所以数据量越大越好。