通过验证一个学习器在训练集和测试集上的表现,来确定模型是否合适,参数是否合适。
如果训练集和测试集得分都很低,说明学习器不合适。
如果训练集得分高,测试集得分低,模型过拟合,训练集得分低,测试集得分高,不太可能。
示例代码
import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.model_selection import validation_curve from sklearn.svm import SVC # 加载数据 digits = load_digits() X, y = digits.data, digits.target # 验证曲线 param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("SVM VC") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) # 训练数据 plt.semilogx(param_range, train_scores_mean, label="train score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") # 测试数据 plt.semilogx(param_range, test_scores_mean, label="test score",color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
输出
参数gamma的调节
很小时,训练集和测试集得分都低,欠拟合
增大时,训练集和测试集得分有个很好地值
过大时,训练集得分高,测试集得分低,过拟合。