之前讲到强化学习可以用马尔科夫决策过程来描述,通常情况下,马尔科夫需要知道 {S A P R γ},γ是衰减因子,那为什么还需要蒙特卡罗呢?
首先什么是蒙特卡罗?
蒙特卡罗实际上是一座赌城的名字,蒙特卡罗方法是冯 诺依曼 用这座赌城的名字起的。
蒙特卡罗方法的主要思想是:当求解的问题是某随机事件出现的概率,或者某随机变量的期望时,可以采用多次采样,以该事件出现的频率来估计其概率,以该变量的均值来估计其期望。并以此来代替问题的解。
那么为什么要用蒙特卡罗方法?
在真实的场景中,我们经常没法确定状态转移概率P,或者根本就是完全随机,那么我们就无法计算该状态的价值函数,但是依然要解决这类问题,怎么办?
一个可行的思路是:虽然没有状态转移概率,但是这个概率是存在的,或者说通过一个动作一定能够使该状态转换到另一个状态,那么我们可以重复试验很多次,然后求该状态每次试验的价值平均,这就是蒙特卡罗思想。
下面来具体看看蒙特卡罗的数学描述
1.首先蒙特卡罗问题的使用条件{S A γ} , 在控制问题中还需要ε,无需状态转移概率P , 和即时奖励R(这个可以有) , 当然有 π(pai)是 策略评估,预测问题,无π 是策略优化,控制问题。
2.蒙特卡罗是通过试验来计算价值函数的,根据贝尔曼方程,vπ(s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...|St=s) , 需要知道整个回合episode的奖赏R , 而且有些情况下不到最后是没有奖赏的,如下棋,完了才有输赢,故蒙特卡罗需要生成整个回合。即每次试验要从起点到终点。
当然起点和终点不一定是固定的,根据具体规则来确定,如下棋,起点不一定就是开局,也可以从中间某步开始,比如街边老头摆的棋阵,再如走迷宫,可以有多个入口,多个出口,只要从大家公认的起点到终点,就算走出迷宫 。
3.理论上完整序列越多,学习效果越好
仔细思考下,会发现如下几个问题
1. 在走迷宫时,可能经常会出现在同一个位置,绕来绕去,这相当于某个状态在整个回合中多次出现, 也有可能某个状态在整个回合中没有出现,那么这种情况如何处理呢?下面会讲到 。
2.生成完整序列 S1,A1,R2, | S2,A2,R3 |...St,At,Rt+1 |,...St-1,At-1,RT, | ST , 最终状态没有动作和奖励,然后根据贝尔曼方程把 R 加起来,但是这里的 R 明明应该是动作价值函数,为什么 可以用来求平均状态价值?
解答:
首先,状态价值函数 vπ(s)=∑a∈Aπ(a|s)qπ(s,a) ,动作价值函数的加权和;
其次,在我们生成完整序列时,在某状态下是根据我们未知(控制)或已知(预测)的策略来选择动作,从而转换到下一个状态,那么重复多次试验,在该状态转换到下一个状态的既定事实是符合 π 的,
如在s时的策略 1/3 选a , 2/3 选b, 那我们重复3次试验,最后的结果应该是 1次 s a s', 2次 s b s'', 然后把这些动作价值函数加起来, q1+q2+q2 = 1/3 q1 + 2/3q2 = π * q
而且, 需要搞清楚一点是:
策略评估求的是状态价值函数,因为策略已定,就是看这种策略下的价值大小,
而策略评价求的是动作价值函数,因为目的是找策略,就是看每个状态下不同动作的价值大小
下面我们来看看蒙特卡罗方法解决策略评估问题,顺便解决上个问题1
1 输入 {S A R γ π}, 初始化价值表 和 状态计数表
2.循环 生成完整序列 S1,A1,R2, | S2,A2,R3 |...St,At,Rt+1