[CF1025D]Recovering BST

https://www.zybuluo.com/ysner/note/1255759

题面

给出一些数,若要求两数\(gcd>1\)才能连边,询问他们是否能构成一棵二叉搜索树

  • \(n\leq700\)

解析

如果没注意到二叉搜索树这一条件,这题绝对做不出来。。。

二叉搜索树的定义是,对同一节点,左儿子权值比它小,右儿子权值比它大。
于是有一个很重要的性质,中序遍历上点权从小到大

可以得出推论:

  • 一棵子树(在中序遍历上可视为一段区间\([l,r]\)),把它作为左儿子,根结点的父亲一定为\(r+1\);把它作为右儿子,根节点父亲一定为\(l-1\)

然而注意到,如果暴力设\(f[i][j][k][0/1]\)表示以\(k\)为根,\([i,j]\)作为其左/右儿子是否合法是会\(MLE\),而且有许多无效状态。

于是需应用上面推论,设两个判合法性的数组:

  • \(L[i][j]\)表示区间\([i,j-1]\)作为\(j\)的左儿子是否合法
  • \(R[i][j]\)表示区间\([i+1,j]\)作为\(j\)的右儿子是否合法

转移:
\(k\)为区间\([i,j]\)的根,
如果\(L[i][k]=1\)\(r[k][j]=1\),则该状态合法,可以转移;
没地方转移了就\(puts("Yes")\)
如果\(k\)可以与\(l-1\)相连,说明以\(l-1\)为根,\([l,r]\)为右儿子的状态合法。
如果\(k\)可以与\(r+1\)相连,说明以\(r+1\)为根,\([l,r]\)为左儿子的状态合法。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
il ll gi()
{
  re ll x=0,p=1;
  re char ch=getchar();
  while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
  if(ch=='-') p=-1,ch=getchar();
  while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
  return p*x;
}
const int N=710;
int n,a[N],f[N][N],L[N][N],R[N][N];
int main()
{
  ios::sync_with_stdio(false);
  cin>>n;
  for(int i=1;i<=n;i++) cin>>a[i],L[i][i]=R[i][i]=1;
  fp(i,1,n) fp(j,i,n) if(__gcd(a[i],a[j])>1) f[i][j]=f[j][i]=1;
  fq(l,n,1)
    fp(r,l,n)
    fp(k,l,r)
    if(L[l][k]&&R[k][r])
      {
	if(l==1&&r==n) {puts("Yes");return 0;}
	if(f[l-1][k]) R[l-1][r]=1;
	if(f[k][r+1]) L[l][r+1]=1;
      }
  puts("No");
  return 0;
}
posted @ 2018-08-20 15:47  小蒟蒻ysn  阅读(633)  评论(0编辑  收藏  举报