树状数组区间修改与区间查询

要明白树状数组的本质就是“单点修改,区间查询”

怎么实现“区间修改,区间查询”呢?

观察式子:
a[1]+a[2]+...+a[n]

= (c[1]) + (c[1]+c[2]) + ... + (c[1]+c[2]+...+c[n]) 

= n*c[1] + (n-1)*c[2] +... +c[n]

= n * (c[1]+c[2]+...+c[n]) - (0*c[1]+1*c[2]+...+(n-1)*c[n])    (式子①)

那么我们就维护一个数组c2[n],其中c2[i] = (i-1)*c[i]

每当修改c的时候,就同步修改一下c2,这样复杂度就不会改变

那么

式子①

=n*sigma(c,n) - sigma(c2,n)

于是我们做到了在O(logN)的时间内完成一次区间和查询

 

举个例子:

 

il void add(re int x,re int k){for(re int i=x;i<=n;i+=i&-i) t[i]+=k,t1[i]+=1ll*x*k;}
il ll Query(re int x){re ll res=0;for(re int i=x;i;i-=i&-i) res+=t[i]*(x+1)-t1[i];return res;}(见“K大数查询”)

 

posted @ 2018-03-28 08:16  小蒟蒻ysn  阅读(143)  评论(0编辑  收藏  举报