|NO.Z.00030|——————————|BigDataEnd|——|Hadoop&Python.v08|——|Arithmetic.v08|NumPy科学计算库:NumPy索引/切⽚/迭代|
一、索引、切⽚和迭代:基本索引和切⽚
### --- numpy中数组切⽚是原始数组的视图,这意味着数据不会被复制,视图上任何数据的修改都会反映到原数组上
arr = np.array([0,1,2,3,4,5,6,7,8,9])
arr[5] # 索引 输出 5
arr[5:8] # 切⽚输出:array([5, 6, 7])
arr[2::2] # 从索引2开始每两个中取⼀个 输出 array([2, 4, 6, 8])
arr[::3] # 不写索引默认从0开始,每3个中取⼀个 输出为 array([0, 3, 6, 9])
arr[1:7:2] # 从索引1开始到索引7结束,左闭右开,每2个数中取⼀个 输出 array([1, 3, 5])
arr[::-1] # 倒序 输出 array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
arr[::-2] # 倒序 每两个取⼀个 输出 array([9, 7, 5, 3, 1])
arr[5:8]=12 # 切⽚赋值会赋值到每个元素上,与列表操作不同
temp = arr[5:8]
temp[1] = 1024
arr # 输出:array([ 0, 1, 2, 3, 4, 12, 1024, 12, 8, 9])
### --- 对于⼆维数组或者⾼维数组,我们可以按照之前的知识来索引,当然也可以传⼊⼀个以逗号隔开的索引列表来选区单个或多个元素
arr2d = np.array([[1,3,5],[2,4,6],[-2,-7,-9],[6,6,6]]) # ⼆维数组 shape(3,4)
arr2d[0,-1] #索引 等于arr2d[0][-1] 输出 5
arr2d[0,2] #索引 等于arr2d[0][2] == arr2d[0][-1] 输出 5
arr2d[:2,-2:] #切⽚ 第⼀维和第⼆维都进⾏切⽚ 等于arr2d[:2][:,1:]
arr2d[:2,1:] #切⽚ 1 == -2 ⼀个是正序,另个⼀是倒序,对应相同的位置
~~~ 输出:
#array([[3, 5],
# [4, 6]])
二、花式索引和索引技巧
### --- 整数数组进⾏索引即花式索引,其和切⽚不⼀样,它总是将数据复制到新数组中
import numpy as np
#⼀维
arr1 = np.array([1,2,3,4,5,6,7,8,9,10])
arr2 = arr1[[1,3,3,5,7,7,7]] # 输出 array([2, 4, 4, 6, 8, 8, 8])
arr2[-1] = 1024 # 修改值,不影响arr1
#⼆维
arr2d = np.array([[1,3,5,7,9],[2,4,6,8,10],[12,18,22,23,37],
[123,55,17,88,103]]) #shape(4,5)
arr2d[[1,3]] # 获取第⼆⾏和第四⾏,索引从0开始的所以1对应第⼆⾏
~~~ 输出 array([[ 2, 4, 6, 8, 10],
# [123, 55, 17, 88, 103]])
arr2d[([1,3],[2,4])] # 相当于arr2d[1,2]获取⼀个元素,arr2d[3,4]获取另⼀个元素
~~~ 输出为 array([ 6, 103])
# 选择⼀个区域
arr2d[np.ix_([1,3,3,3],[2,4,4])] # 相当于 arr2d[[1,3,3,3]][:,[2,4,4]]
arr2d[[1,3,3,3]][:,[2,4,4]]
# ix_()函数可⽤于组合不同的向量
# 第⼀个列表存的是待提取元素的⾏标,第⼆个列表存的是待提取元素的列标
~~~ 输出为
# array([[ 6, 10, 10],
# [ 17, 103, 103],
# [ 17, 103, 103],
# [ 17, 103, 103]])
### --- boolean值索引
names =
np.array(['softpo','Brandon','Will','Michael','Will','Ella','Daniel','softpo','Will','Brandon'])
cond1 = names == 'Will'
cond1
# 输出array([False, False, True, False, True, False, False, False, True,
False])
names[cond1] # array(['Will', 'Will', 'Will'], dtype='<U7')
arr = np.random.randint(0,100,size = (10,8)) # 0~100随机数
cond2 = arr > 90
# 找到所有⼤于90的索引,返回boolean类型的数组 shape(10,8),⼤于返回True,否则False
arr[cond2] # 返回数据全部是⼤于90的
Walter Savage Landor:strove with none,for none was worth my strife.Nature I loved and, next to Nature, Art:I warm'd both hands before the fire of life.It sinks, and I am ready to depart
——W.S.Landor
分类:
bdv027-python
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了