【模型部署】使用Flask部署算法模型
Flask介绍
Flask是一个非常轻量级的Python Web框架。使用Flask可以很容易地部署算法服务,通过HTTP方式对外提供API响应接口。
以敏感词检测算法为例。 如果要部署其他算法,代码对应做一些修改既可。
部署代码
from flask import Flask, request
from sensitive_word_detect import SensitiveWordDetect
app = Flask(__name__)
# 此处做一些文件读取、类实例化、计算图加载等预处理的工作
sensitive_words_path = './word_files/senti_words.txt' # 敏感词列表
stopWords_path = './word_files/stop_words.txt' # 特殊符号列表
detector = SensitiveWordDetect(sensitive_words_path, stopWords_path)
@app.route('/sentiwords', methods=("POST",))
def sentiwords():
line = request.form['line']
sensitive_words = ''
if line.strip() != '':
_, sensitive_lst = detector.replace_sensitive_word(line)
for word in sensitive_lst:
sensitive_words += word + ','
if sensitive_words.strip() == '':
rst = {
"legal":"通过",
"body":[]
}
else:
rst_lst = []
if sensitive_words.strip() != '':
rst_lst.append({
"type":"包含敏感词",
"content":sensitive_words
})
rst = {
"legal":"不通过",
"body":rst_lst
}
return rst
if __name__ == '__main__':
app.config['JSON_AS_ASCII'] = False
app.run(host='0.0.0.0', port=8000)
调用测试
# coding=UTF-8
from datetime import datetime
import requests
starttime = datetime.now()
text_path = "./test_files/000.txt" # 文本路径
content = [] # 临时存储文本
with open(text_path, 'r', encoding='utf-8') as f:
content = f.readlines()
line = ''.join(content)
data = {"line": line}
headers = {
'Connection': 'close',
}
r = requests.post('http://0.0.0.0:8000/sentiwords', data=data, headers=headers)
if str(r.status_code) != '200':
print("status_code: ", str(r.status_code))
print(r.text)
elif r.json()['legal'] == '不通过':
for temp in r.json()['body']:
if temp['type'] == '包含敏感词':
sensitive_word_result = temp['content']
print(sensitive_word_result)
endtime = datetime.now()
time_consume = endtime - starttime
print('敏感词检测完成,共用时{}'.format(time_consume))