FreeRTOS Heap Memory Management (4) - heap4源码分析

FreeRTOS Heap Memory Management (4) - heap4源码分析

/* FreeRTOS Kernel V10.4.1 */

原文链接:https://www.cnblogs.com/yanpio/p/14821851.html

heap4的实现与heap2非常相似,不同之处在于heap4需要合并相邻的 free block。请参考 FreeRTOS Heap Memory Management (3) - heap2源码分析

1 变量与结构定义

#include <stdlib.h>

#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE

#include "FreeRTOS.h"
#include "task.h"

#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE

#if ( configSUPPORT_DYNAMIC_ALLOCATION == 0 )
    #error This file must not be used if configSUPPORT_DYNAMIC_ALLOCATION is 0
#endif

/* Block sizes must not get too small. */
#define heapMINIMUM_BLOCK_SIZE    ( ( size_t ) ( xHeapStructSize << 1 ) )

/* Assumes 8bit bytes! */
#define heapBITS_PER_BYTE         ( ( size_t ) 8 )

/* Allocate the memory for the heap. */
#if ( configAPPLICATION_ALLOCATED_HEAP == 1 )

/* The application writer has already defined the array used for the RTOS
* heap - probably so it can be placed in a special segment or address. */
    extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#else
    PRIVILEGED_DATA static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#endif /* configAPPLICATION_ALLOCATED_HEAP */

/* 
 * 与heap2不同的是, xBlockSize成员的最高bit 表示该block是否被分配。
 * size_t 被定义为 long long类型,因此最高位不可能被置位,所以拿来做标志位不会带来安全问题。
 */
typedef struct A_BLOCK_LINK
{
    struct A_BLOCK_LINK * pxNextFreeBlock; /*<< The next free block in the list. */
    size_t xBlockSize;                     /*<< The size of the free block. */
} BlockLink_t;

/* 函数申明,heap2中此函数被定义成宏,而此处是被定义成函数 */

static void prvInsertBlockIntoFreeList( BlockLink_t * pxBlockToInsert ) PRIVILEGED_FUNCTION;

static void prvHeapInit( void ) PRIVILEGED_FUNCTION;

/*-----------------------------------------------------------*/

/* 与heap2实现一致,可以参考heap2源码解析 */
static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK );

//与heap2.c不同,此处的pxEnd是指针, xStart ,pxEnd 初始化后,值不再变化
PRIVILEGED_DATA static BlockLink_t xStart, * pxEnd = NULL;

/* Keeps track of the number of calls to allocate and free memory as well as the
 * number of free bytes remaining, but says nothing about fragmentation. */
PRIVILEGED_DATA static size_t xFreeBytesRemaining = 0U;
PRIVILEGED_DATA static size_t xMinimumEverFreeBytesRemaining = 0U;
PRIVILEGED_DATA static size_t xNumberOfSuccessfulAllocations = 0;
PRIVILEGED_DATA static size_t xNumberOfSuccessfulFrees = 0;

/* size_t 类型(long long)的最高位,结构体中的xBlockSize成员的最高位存储标志,0 - 未分配, 1 - 已分配
 * 此变量在初始化时被赋值(0b1000000000000000000000000),然后当做常量使用。用于判断 xBlockSize 的最高位是否为0
 */  
PRIVILEGED_DATA static size_t xBlockAllocatedBit = 0; 

2 prvInsertBlockIntoFreeList()

/* 此函数主要功能是将free block 重新插入到 free block list ,与heap2中的实现有较大差别。
 * 一是插入的位置不同,二是插入后需要合并前后碎片。*/
static void prvInsertBlockIntoFreeList( BlockLink_t * pxBlockToInsert ) /* PRIVILEGED_FUNCTION */
{
    BlockLink_t * pxIterator;
    uint8_t * puc;

    /* 注意,此处搜索的是最相近的地址,而不是最相近的大小,这与heap2不同。
     * heap2中需要将free block 按照 size 大小进行排序,所以需要找到size相近的节点。
     * 而heap4需要合并地址相邻的碎片,所以需要找到地址最相近的节点。 */
    for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
    {
        /* Nothing to do here, just iterate to the right position. */
    }

   /* 判断迭代器指向的free block(在插入free block的前面)是否和插入的free block相邻,如果相邻,则合并 */
    puc = ( uint8_t * ) pxIterator;

    if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
    {
        pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
        pxBlockToInsert = pxIterator;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    /* 判断插入的free block (可能已经和前一个free block合并) 是否与后面的free block相邻,如果是,则合并 */
    puc = ( uint8_t * ) pxBlockToInsert;
    
    if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
    {
        /* 如果pxIterator指向的不是pEnd,则进行合并,否则就直接指向pEnd,而不需要合并 */
        if( pxIterator->pxNextFreeBlock != pxEnd )
        {
            /* Form one big block from the two blocks. */
            pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
            pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
        }
        else
        {
            pxBlockToInsert->pxNextFreeBlock = pxEnd;
        }
    }
    else
    {
        pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
    }

    /* 如果前后都没有合并,则直接将节点插入即可 */
    if( pxIterator != pxBlockToInsert )
    {
        pxIterator->pxNextFreeBlock = pxBlockToInsert;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }
}

3 prvHeapInit()

static void prvHeapInit( void ) /* PRIVILEGED_FUNCTION */
{
    BlockLink_t * pxFirstFreeBlock;
    uint8_t * pucAlignedHeap; //对齐后的空间地址
    size_t uxAddress;
    size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;

   /* 对齐ucHeap,思路见heap2 */
    uxAddress = ( size_t ) ucHeap;
    
    if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
    {
        uxAddress += ( portBYTE_ALIGNMENT - 1 );
        uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
        xTotalHeapSize -= uxAddress - ( size_t ) ucHeap;
    }

     /* 初始化头节点 xStart */
    pucAlignedHeap = ( uint8_t * ) uxAddress;
    
    xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
    xStart.xBlockSize = ( size_t ) 0;

    /* pxEnd初始化的方式与heap2不同
     * pxEnd是指针,并且指向的结构体插入在heap的最后面*/
    uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize;
    uxAddress -= xHeapStructSize; /* 留出pxEnd指向的结构体需要占用的空间 */
    uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );/* 内存对齐 */
    
    pxEnd = ( void * ) uxAddress;
    pxEnd->xBlockSize = 0;
    pxEnd->pxNextFreeBlock = NULL;

    /* 创建第一个节点,此时整个heap都被这个节点指向的block占据 */
    pxFirstFreeBlock = ( void * ) pucAlignedHeap;
    pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock;
    pxFirstFreeBlock->pxNextFreeBlock = pxEnd;

    /* Only one block exists - and it covers the entire usable heap space. */
    xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
    xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;

    /* 初始化数值,即将size_t类型的数值最高位置1。初始化后,此值只用于判断,值不再变化 */
    xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
}

4 pvPortMalloc()

void * pvPortMalloc( size_t xWantedSize )
{
    BlockLink_t * pxBlock, * pxPreviousBlock, * pxNewBlockLink;
    void * pvReturn = NULL;

    vTaskSuspendAll();
    {
        /* 如果pxEnd值等于初始值(未初始化),则进行初始化 */
        if( pxEnd == NULL )
        {
            prvHeapInit();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        /* 如果 xWantedSize 的最高位为1 ,则在赋值时会覆盖xBlockSize的最高位(标志位,标志该block是否已分配) 
         * 因此必须先检查。正常情况下,xWantedSize 的最高位不可能为1 ,因为size_t (long long)的最高位如果是1,则这个数是负数 */
        if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
        {        
            /* xWantedSize + xHeapStructSize, 然后进行内存对齐 */
            if( xWantedSize > 0 )
            {
                xWantedSize += xHeapStructSize;
             
                if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
                {                
                    xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
                    //#define configASSERT( x )         if( x == 0 ) { taskDISABLE_INTERRUPTS(); for(;;); }
                    configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
			
            /* 分配内存 */
            if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
            {
                /* heap4的free block是按照地址高低进行排序的,从低地址开始迭代,直到找到一个xBlockSize满足要求的free block */
                pxPreviousBlock = &xStart;
                pxBlock = xStart.pxNextFreeBlock;
                
                while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
                {
                    pxPreviousBlock = pxBlock;
                    pxBlock = pxBlock->pxNextFreeBlock;
                }

                /* If the end marker was reached then a block of adequate size was	not found. */
                if( pxBlock != pxEnd )
                {
                    //在内存上偏移首部的结构体长度
                    pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
                  
                    //将分配出去的内存从链表节点删除
                    pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
                    /* 如果该内存的空间大于所需内存,则将多余内存回收到空闲列表中 */
                    if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
                    {
                        pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
                        configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
						
                        /* 计算分割后的两个block的xBlockSize值 */
                        pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
                        pxBlock->xBlockSize = xWantedSize;

                        /* 回收多余空间 */
                        prvInsertBlockIntoFreeList( pxNewBlockLink );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    xFreeBytesRemaining -= pxBlock->xBlockSize;

                    /* 更新最小剩余空间 */
                    if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
                    {
                        xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    /* 置标志位,已经分配出去的block 指向null. */
                    pxBlock->xBlockSize |= xBlockAllocatedBit;
                    pxBlock->pxNextFreeBlock = NULL;
                    xNumberOfSuccessfulAllocations++;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        traceMALLOC( pvReturn, xWantedSize );
    }
    ( void ) xTaskResumeAll();

    /* 如果使用钩子函数,则在分配失败后进行调用 */
    #if ( configUSE_MALLOC_FAILED_HOOK == 1 )
        {
            if( pvReturn == NULL )
            {
                extern void vApplicationMallocFailedHook( void );
                vApplicationMallocFailedHook();
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
    #endif /* if ( configUSE_MALLOC_FAILED_HOOK == 1 ) */

    configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
    return pvReturn;
}

5 vPortFree()

void vPortFree( void * pv )
{
    uint8_t * puc = ( uint8_t * ) pv;
    BlockLink_t * pxLink;

    if( pv != NULL )
    {
        /* 将结构体变量的空间也释放掉 */
        puc -= xHeapStructSize;

        /* This casting is to keep the compiler from issuing warnings. */
        pxLink = ( void * ) puc;

        /* Check the block is actually allocated. */
        configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
        configASSERT( pxLink->pxNextFreeBlock == NULL );

        /* 释放内存,并插入到空闲列表中 */
        if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
        {
            if( pxLink->pxNextFreeBlock == NULL )
            {
                /* 清除标志位 */
                pxLink->xBlockSize &= ~xBlockAllocatedBit;
                
                vTaskSuspendAll();
                {
                    /* 将释放掉的空间插入到空闲列表中. */
                    xFreeBytesRemaining += pxLink->xBlockSize;
                    traceFREE( pv, pxLink->xBlockSize );
                    prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
                    xNumberOfSuccessfulFrees++;
                }
                ( void ) xTaskResumeAll();
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }
}

6 vPortGetHeapStats()

/* 结构体定义了关于heap状态的一些变量 */
typedef struct xHeapStats
{
    /* The total heap size available - this is the sum of all the free blocks, not the largest block that can be allocated.*/
    size_t xAvailableHeapSpaceInBytes; 
    /* The maximum size, in bytes, of all the free blocks within the heap at the time vPortGetHeapStats() is called. */
    size_t xSizeOfLargestFreeBlockInBytes;
    /* The minimum size, in bytes, of all the free blocks within the heap at the time vPortGetHeapStats() is called. */
    size_t xSizeOfSmallestFreeBlockInBytes;   
    /* The number of free memory blocks within the heap at the time vPortGetHeapStats() is called. */
    size_t xNumberOfFreeBlocks;                 
   /* The minimum amount of total free memory (sum of all free blocks) there has been in the heap since the system booted.*/
    size_t xMinimumEverFreeBytesRemaining;     
    /* The number of calls to pvPortMalloc() that have returned a valid memory block. */
    size_t xNumberOfSuccessfulAllocations;      
    /* The number of calls to vPortFree() that has successfully freed a block of memory. */
    size_t xNumberOfSuccessfulFrees;            
} HeapStats_t;

/* 获取heap的一些信息 */
void vPortGetHeapStats( HeapStats_t * pxHeapStats )
{
    BlockLink_t * pxBlock;
    /* portMAX_DELAY used as a portable way of getting the maximum value. */
    size_t xBlocks = 0, xMaxSize = 0, xMinSize = portMAX_DELAY; 

    vTaskSuspendAll();
    {
        pxBlock = xStart.pxNextFreeBlock;

        /* 搜索最大和最小的block. */
        if( pxBlock != NULL )
        {
            do
            {
                /* Increment the number of blocks and record the largest block seen so far. */
                xBlocks++;

                if( pxBlock->xBlockSize > xMaxSize )
                {
                    xMaxSize = pxBlock->xBlockSize;
                }

                if( pxBlock->xBlockSize < xMinSize )
                {
                    xMinSize = pxBlock->xBlockSize;
                }

                pxBlock = pxBlock->pxNextFreeBlock;
            } while( pxBlock != pxEnd );
        }
    }
    ( void ) xTaskResumeAll();

    /* 填充数值 */ 
    pxHeapStats->xSizeOfLargestFreeBlockInBytes = xMaxSize;
    pxHeapStats->xSizeOfSmallestFreeBlockInBytes = xMinSize;
    pxHeapStats->xNumberOfFreeBlocks = xBlocks;

    taskENTER_CRITICAL();
    {
        pxHeapStats->xAvailableHeapSpaceInBytes = xFreeBytesRemaining;
        pxHeapStats->xNumberOfSuccessfulAllocations = xNumberOfSuccessfulAllocations;
        pxHeapStats->xNumberOfSuccessfulFrees = xNumberOfSuccessfulFrees;
        pxHeapStats->xMinimumEverFreeBytesRemaining = xMinimumEverFreeBytesRemaining;
    }
    taskEXIT_CRITICAL();
}

7 其他函数

size_t xPortGetFreeHeapSize( void )
{
    return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/

size_t xPortGetMinimumEverFreeHeapSize( void )
{
    return xMinimumEverFreeBytesRemaining;
}
/*-----------------------------------------------------------*/

void vPortInitialiseBlocks( void )
{
    /* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
posted on 2021-05-28 13:44  Yanpeng0527  阅读(583)  评论(0编辑  收藏  举报