MySQL的索引、事务、锁和日志那些事儿

一、索引的数据结构

哈希表

Hash表,在Java中的HashMap,TreeMap就是Hash表结构,以键值对的方式存储数据。我们使用Hash表存储表数据Key可以存储索引列,Value可以存储行记录或者行磁盘地址。

优点:Hash表在等值查询时效率很高,时间复杂度为O(1)。

缺点:不支持范围快速查找,范围查找时还是只能通过扫描全表方式。

二叉搜索树

每个节点最多有2个分叉,左子树和右子树数据顺序左小右大。

这个特点就是为了保证每次查找都可以这折半而减少IO次数,但是二叉树就很考验第一个根节点的取值,因为很容易在这个特点下出现我们并发想发生的情况“树不分叉了”,这就很难受很不稳定。

 

 

缺点:时间复杂度不稳定,最坏情况下是如上图所示的线性表,时间复杂度是O(n)。

平衡二叉树

平衡二叉树是采用二分法思维,平衡二叉查找树除了具备二叉树的特点,最主要的特征是树的左右两个子树的层级最多相差1。在插入删除数据时通过左旋/右旋操作保持二叉树的平衡,不会出现左子树很高、右子树很矮的情况。

使用平衡二叉查找树查询的性能接近于二分查找法,时间复杂度是 O(log2n)。查询id=6,只需要两次IO。

 

 

 

就这个特点来看,可能各位会觉得这就很好,可以达到二叉树的理想的情况了。然而依然存在一些问题:

时间复杂度和树高相关。树有多高就需要检索多少次,每个节点的读取,都对应一次磁盘IO操作。树的高度就等于每次查询数据时磁盘IO操作的次数。磁盘每次寻道时间为10ms,在表数据量大时,查询性能就会很差。(1百万的数据量,log2n约等于20次磁盘IO,时间20*10=0.2s)

平衡二叉树不支持范围查询快速查找,范围查询时需要从根节点多次遍历,查询效率不高。

B树

MySQL的数据是存储在磁盘文件中的,查询处理数据时,需要先把磁盘中的数据加载到内存中,磁盘IO 操作非常耗时,所以我们优化的重点就是尽量减少磁盘 IO 操作。访问二叉树的每个节点就会发生一次IO,如果想要减少磁盘IO操作,就需要尽量降低树的高度。那如何降低树的高度呢?

假如key为bigint=8字节,每个节点有两个指针,每个指针为4个字节,一个节点占用的空间16个字节(8+4*2=16)。

因为在MySQL的InnoDB存储引擎一次IO会读取的一页(默认一页16K)的数据量,而二叉树一次IO有效数据量只有16字节,空间利用率极低。为了最大化利用一次IO空间,一个简单的想法是在每个节点存储多个元素,在每个节点尽可能多的存储数据。每个节点可以存储1000个索引(16k/16=1000),这样就将二叉树改造成了多叉树,通过增加树的叉树,将树从高瘦变为矮胖。构建1百万条数据,树的高度只需要2层就可以(1000*1000=1百万),也就是说只需要2次磁盘IO就可以查询到数据。磁盘IO次数变少了,查询数据的效率也就提高了。

这种数据结构我们称为B树,B树是一种多叉平衡查找树,如下图主要特点:

  1. B树的节点中存储着多个元素,每个内节点有多个分叉。
  1. 节点中的元素包含键值和数据,节点中的键值从大到小排列。也就是说,在所有的节点都储存数据。
  1. 父节点当中的元素不会出现在子节点中。
  1. 所有的叶子结点都位于同一层,叶节点具有相同的深度,叶节点之间没有指针连接。

 

 

假如我们查询值等于10的数据。查询路径磁盘块1->磁盘块2->磁盘块6。

  • 第一次磁盘IO:将磁盘块1加载到内存中,在内存中从头遍历比较,10<15,走15的左路节点P1,到磁盘寻址磁盘块2。
  • 第二次磁盘IO:将磁盘块2加载到内存中,在内存中从头遍历比较,7<10,走7的右路节点P2,到磁盘中寻址定位到磁盘块6。
  • 第三次磁盘IO:将磁盘块6加载到内存中,在内存中从头遍历比较,8<10,10=10,找到10,取出data。如果data存储的行记录,取出data,查询结束。如果存储的是磁盘地址,还需要根据磁盘地址到磁盘中取出数据,查询终止。

相比二叉平衡查找树,在整个查找过程中,虽然数据的比较次数并没有明显减少,但是磁盘IO次数会大大减少。同时,由于我们的比较是在内存中进行的,比较的耗时可以忽略不计。B树的高度一般2至3层就能满足大部分的应用场景,所以使用B树构建索引可以很好的提升查询的效率。

 

B树虽然看着很理想,但它依然存在可以优化的地方:

  1. B树不支持范围查询的快速查找,你想想这么一个情况如果我们想要查找10和35之间的数据,查找到15之后,需要回到根节点重新遍历查找,需要从根节点进行多次遍历,查询效率有待提高;
  1. 如果data存储的是行记录,行的大小随着列数的增多,所占空间会变大。这时,一个页中可存储的数据量就会变少,树相应就会变高,磁盘IO次数就会变大。

B+树

B+树,作为B树的升级版,在B树基础上,MySQL在B树的基础上继续改造,使用B+树构建索引。B+树和B树最主要的区别在于非叶子节点是否存储数据的问题。

  • B树:非叶子节点和叶子节点都会存储数据。
  • B+树:只有叶子节点才会存储数据,非叶子节点至存储键值。叶子节点之间使用双向指针连接,最底层的叶子节点形成了一个双向有序链表。

B+树的最底层叶子节点包含了所有的索引项。从下图可以看到,B+树在查找数据的时候,由于数据都存放在最底层的叶子节点上,所以每次查找都需要检索到叶子节点才能查询到数据。所以在需要查询数据的情况下每次的磁盘的IO跟树高有直接的关系,但是从另一方面来说,由于数据都被放到了叶子节点,所以放索引的磁盘块锁存放的索引数量是会跟这增加的,所以相对于B树来说,B+树的树高理论上情况下是比B树要矮的。B+树一定是检索到叶子节点才能取到数据,而B树在索引中数据满足了当前查询语句所需要的全部数据,此时只需要找到索引即可立刻返回,不需要检索到最底层的叶子节点。

 

 

 

等值查询:

假如我们查询值等于9的数据。查询路径磁盘块1->磁盘块2->磁盘块6。

  • 第一次磁盘IO:将磁盘块1加载到内存中,在内存中从头遍历比较,9<15,走15的左节点P1,到磁盘块2。
  • 第二次磁盘IO:将磁盘块2加载到内存中,在内存中从头遍历比较,7<9<12,走7的右节点P2,到磁盘中寻址定位到磁盘块6。
  • 第三次磁盘IO:将磁盘块6加载到内存中,在内存中从头遍历比较,在第三个索引中找到9,取出data,如果data存储的行记录,取出data,查询结束。如果存储的是磁盘地址,还需要根据磁盘地址到磁盘中取出数据,查询终止。

二、MySQL的索引类型

主键索引(聚簇索引)

每个InnoDB表都有一个聚簇索引 ,聚簇索引使用B+树构建,叶子节点存储的数据是整行记录。一般情况下,聚簇索引等同于主键索引,当一个表没有创建主键索引时,InnoDB会自动创建一个ROWID字段来构建聚簇索引。InnoDB创建索引的具体规则如下:

  1. 在表上定义主键PRIMARY KEY,InnoDB将主键索引用作聚簇索引。
  1. 如果表没有定义主键,InnoDB会选择第一个不为NULL的唯一索引列用作聚簇索引。
  1. 如果以上两个都没有,InnoDB 会使用一个6 字节长整型的隐式字段 ROWID字段构建聚簇索引。该ROWID字段会在插入新行时自动递增。

除聚簇索引之外的所有索引都称为辅助索引。在中InnoDB,辅助索引中的叶子节点存储的数据是该行的主键值都。 在检索时,InnoDB使用此主键值在聚簇索引中搜索行记录。

InnoDB的数据和索引存储在一个.ibd的文件中。InnoDB的数据组织方式是聚簇索引。

主键索引的叶子节点会存储数据行,辅助索引只会存储主键值。

 

根据主键等值查询数据:select * from user_innodb where id = 28;

 

 

 

  1. 先在主键树中从根节点开始检索,将根节点加载到内存,比较28<75,走75的左路P1。(1次磁盘IO)
  1. 将左子树节点加载到内存中,比较16<28<47,走47节点的左路P2。(1次磁盘IO)
  1. 检索到叶节点,将节点加载到内存中遍历,比较16<28,18<28,28=28。查找到值等于28的索引项,直接可以获取整行数据。将该记录返回给客户端。(1次磁盘IO)

磁盘IO数量:3次。

根据主键范围查询数据:与等值查询前三部完全一致,会多一步步骤4。

  1. 需要向后遍历底层叶子链表,直至到达最后一个不满足筛选条件。向后遍历底层叶子链表,将下一个节点加载到内存中,遍历比较,28<47=47,然后将47对应的整行数据与28对应的整行数据一起返回。(1次磁盘IO)

磁盘IO数量:4次。

 

二级索引

除聚簇索引之外的所有索引都称为辅助索引,InnoDB的辅助索引只会存储主键值。索引结果如下图。

 

 

 

 

底层叶子节点的按照(age,id)的顺序排序,先按照age列从小到大排序,age列相同时按照id列从小到大排序。

使用辅助索引需要检索两遍索引:首先检索辅助索引获得主键,然后使用主键到主索引中检索获得记录。

画图分析等值查询的情况:select * from t_user_innodb where age=19;

 

 

 

根据在辅助索引树中获取的主键id,到主键索引树检索数据的过程称为回表查询。

覆盖索引

如果只需要通过辅助索引查询主键id,这种情况不需要回表,这种情况下的索引叫做覆盖索引。

联合索引

 

 

索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果。如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是"where name like ‘张%’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止。可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。

索引下推

MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

 

 

 

 

上面两张图是select * from tuser where name like '张%' and age=10 and ismale=1;这个SQL语句有无索引下推的执行过程。

图 4 跟图 3 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。

三、MySQL的事务

事务隔离级别

SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读已提交(read committed)、可重复读(repeatable read)和串行化(serializable )。

  • 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
  • 读已提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
  • 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
  • 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

案例说明:

create table T(c int) engine=InnoDB;
insert into T(c) values(1);

 

 

  • 若隔离级别是“读未提交”, 则 V1 的值就是 2。这时候事务 B 虽然还没有提交,但是结果已经被 A 看到了。因此,V2、V3 也都是 2。
  • 若隔离级别是“读提交”,则 V1 是 1,V2 的值是 2。事务 B 的更新在提交后才能被 A 看到。所以, V3 的值也是 2。
  • 若隔离级别是“可重复读”,则 V1、V2 是 1,V3 是 2。之所以 V2 还是 1,遵循的就是这个要求:事务在执行期间看到的数据前后必须是一致的。
  • 若隔离级别是“串行化”,则在事务 B 执行“将 1 改成 2”的时候,会被锁住。直到事务 A 提交后,事务 B 才可以继续执行。所以从 A 的角度看, V1、V2 值是 1,V3 的值是 2。

读已提交和可重复读是依赖MVCC多版本并发控制去实现的,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用加锁的方式来避免并行访问。

 

 

MySQL在可重复读隔离级别下可以通过MVCC和加锁来解决幻读问题

当前读:加锁

快照读:MVCC

MVCC

InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。

而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。

这个视图数组把所有的 row trx_id 分成了几种不同的情况。

 

 

这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  • 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
  • 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  • 如果落在黄色部分,那就包括两种情况a. 若row trx_id在数组中,表示这个版本是由还没提交的事务生成的,不可见;b. 若row trx_id不在数组中,表示这个版本是已经提交了的事务生成的,可见。

一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  • 版本未提交,不可见;
  • 版本已提交,但是是在视图创建后提交的,不可见;
  • 版本已提交,而且是在视图创建前提交的,可见。

 

 

RR隔离级别:

事务A查询得到的k=1,事务B查询得到的k=3

RC隔离级别:

事务A查询得到的k=2,事务B查询得到的k=3

四、MySQL中的锁

行级锁

InnoDB存储引擎中有如下两种类型的行级锁

  • 共享锁(Shared Lock,简称S锁),在事务需要读取一条记录时,需要先获取改记录的S锁
  • 排他锁(Exclusive Lock,简称X锁),在事务要改动一条记录时,需要先获取该记录的X锁

S锁和X锁之间的兼容关系如下:

 

 

update,delete,insert 都会自动给涉及到的数据加上排他锁,select 语句默认不会加任何锁

那什么情况下会对读操作加锁呢?

  • select … lock in share mode,对读取的记录加S锁
  • select … for update ,对读取的记录加X锁
  • 在事务中读取记录,对读取的记录加S锁
  • 事务隔离级别在 SERIALIZABLE 下,对读取的记录加S锁

InnoDB中有如下三种锁

  • Record Lock:对单个记录加锁
  • Gap Lock:间隙锁,锁住记录前面的间隙,不允许插入记录
  • Next-key Lock:同时锁住数据和数据前面的间隙,即数据和数据前面的间隙都不允许插入记录

两阶段锁协议

在 InnoDB事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

 

 

上图事务B的update语句会被阻塞,直到事务 A 执行commit之后,事务B才能继续执行。

如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。死锁例子如下图所示:

 

 

当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为on,表示开启这个逻辑。

五、MySQL的日志

重要的日志模块:redo log

Mysql每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程 IO成本、查找成本都很高。为了解决这个问题,MySQL的设计者就用了WAL技术来提升更新效率。

WAL的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘。

具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做。

InnoDB的 redo log是固定大小的,比如可以配置为一组4个文件,每个文件的大小是1GB,总共就可以记录4GB 的操作。从头开始写,写到末尾就又回到开头循环写,如下面这个图所示。

 

 

write pos是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。

write pos和checkpoint之间还空着的部分,可以用来记录新的操作。如果write pos追上checkpoint,表示redo log满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint推进一下。

有了redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为 crash-safe。

重要的日志模块:binlog

MySQL 整体来看,其实就有两块:一块是Server层,它主要做的是 MySQL 功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的redo log是 InnoDB 引擎特有的日志,而 Server层也有自己的日志,称为 binlog(归档日志)。

这两种日志有以下三点不同:

  • redo log是 InnoDB引擎特有的;binlog 是MySQL的Server层实现的,所有引擎都可以使用。
  • redo log是物理日志,记录的是“在某个数据页上做了什么修改”;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
  • redo log是循环写的,空间固定会用完;binlog是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。
create table T(ID int primary key, c int);
update T set c=c+1 where ID=2;

 

 

update 语句执行流程

InnoDB 引擎在执行这个简单的 update 语句时的内部流程:

  • 执行器先找引擎取ID=2这一行。ID 是主键,引擎直接用树搜索找到这一行。如果ID=2这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。
  • 执行器拿到引擎给的行数据,把这个值加上 1,比如原来是N,现在就是N+1,得到新的一行数据,再调用引擎接口写入这行新数据。
  • 引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log里面,此时 redo log处于prepare 状态。然后告知执行器执行完成了,随时可以提交事务。
  • 执行器生成这个操作的binlog,并把binlog写入磁盘。
  • 执行器调用引擎的提交事务接口,引擎把刚刚写入的redo log改成提交(commit)状态,更新完成。

PS!上述内容来源于京东同事吴浩发言,本人后续做的整理

posted @   天外燕来  阅读(131)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示