【Flink】DataStream API 教程
设置一个maven项目
使用maven 创建一个flink项目,使用下面命令:
$ mvn archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeVersion=1.9.0 \
-DgroupId=wiki-edits \
-DartifactId=wiki-edits \
-Dversion=0.1 \
-Dpackage=wikiedits \
-DinteractiveMode=false
可以根据需要编辑groupid artifactId 和 package,目录项目结构如下:
$ tree wiki-edits
wiki-edits/
├── pom.xml
└── src
└── main
├── java
│ └── wikiedits
│ ├── BatchJob.java
│ └── StreamingJob.java
└── resources
└── log4j.propertie
这是项目已经创建了一些样例代码,我们可以直接删除这些样例代码结构在src/main/java
$ rm wiki-edits/src/main/java/wikiedits/*.java
最后我们需要添加一些我们程序需要的依赖,在pom.xml中添加:
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-wikiedits_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
写一个flink程序
打开IDE,添加一个文件src/main/java/wikiedits/WikipediaAnalysis.java:
package wikiedits;
public class WikipediaAnalysis {
public static void main(String[] args) throws Exception {
}
}
这只是一个基础的main函数,接着我们的第一步就是创建一个环境变量StreamExecutionEnvironment (如果是批处理的话就创建一个ExecutionEnvironment),这个可以用来读取外部文件资源和用来执行程序,所以我们现在main函数中添加这个方法。
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
接下来我们再创一个source,来接受Wikipedia 的IRC log
DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());
这里创建了一个 WikipediaEditEvent 的datastream来帮助我们进一步处理程序。第一步我们需要指明userName为分组key。
KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
.keyBy(new KeySelector<WikipediaEditEvent, String>() {
@Override
public String getKey(WikipediaEditEvent event) {
return event.getUser();
}
});
接着我们需要指定我们想要的结果在一个窗口的输出的时间大小,和做一些聚合操作。本示例展示的是在时间窗口内每个用户增加或者删除字节的数量,一个窗口在一个流里面执行计算,在无限流的数据流中我们需要设置窗口,在示例中窗口设置为5s。
DataStream<Tuple2<String, Long>> result = keyedEdits
.timeWindow(Time.seconds(5))
.aggregate(new AggregateFunction<WikipediaEditEvent, Tuple2<String, Long>, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> createAccumulator() {
return new Tuple2<>("", 0L);
}
@Override
public Tuple2<String, Long> add(WikipediaEditEvent value, Tuple2<String, Long> accumulator) {
accumulator.f0 = value.getUser();
accumulator.f1 += value.getByteDiff();
return accumulator;
}
@Override
public Tuple2<String, Long> getResult(Tuple2<String, Long> accumulator) {
return accumulator;
}
@Override
public Tuple2<String, Long> merge(Tuple2<String, Long> a, Tuple2<String, Long> b) {
return new Tuple2<>(a.f0, a.f1 + b.f1);
}
});
最后打印结果并提交执行
result.print();
see.execute();
所有的操作,例如:建立一个source,transformations,sink,都是在内部建立有向图,
只有我们执行execute()的时候,这些操作图才会在我们本机或者集群上执行。
完整的代码如下:
package wikiedits;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditEvent;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource;
public class WikipediaAnalysis {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());
KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
.keyBy(new KeySelector<WikipediaEditEvent, String>() {
@Override
public String getKey(WikipediaEditEvent event) {
return event.getUser();
}
});
DataStream<Tuple2<String, Long>> result = keyedEdits
.timeWindow(Time.seconds(5))
.aggregate(new AggregateFunction<WikipediaEditEvent, Tuple2<String, Long>, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> createAccumulator() {
return new Tuple2<>("", 0L);
}
@Override
public Tuple2<String, Long> add(WikipediaEditEvent value, Tuple2<String, Long> accumulator) {
accumulator.f0 = value.getUser();
accumulator.f1 += value.getByteDiff();
return accumulator;
}
@Override
public Tuple2<String, Long> getResult(Tuple2<String, Long> accumulator) {
return accumulator;
}
@Override
public Tuple2<String, Long> merge(Tuple2<String, Long> a, Tuple2<String, Long> b) {
return new Tuple2<>(a.f0, a.f1 + b.f1);
}
});
result.print();
see.execute();
}
}
可以是用maven执行完成的程序,在命令行中:
$ mvn clean package
$ mvn exec:java -Dexec.mainClass=wikiedits.WikipediaAnalysis
输出如下
1> (Fenix down,114)
6> (AnomieBOT,155)
8> (BD2412bot,-3690)
7> (IgnorantArmies,49)
3> (Ckh3111,69)
5> (Slade360,0)
7> (Narutolovehinata5,2195)
6> (Vuyisa2001,79)
4> (Ms Sarah Welch,269)
4> (KasparBot,-245)
每行前面的数字代表哪个并执行器接受并执行了任务。
练习:在集群上运行并写入kafka
请先在本机搭建本地集群环境并且安装kafka
我们需要添加kafka-connector 并且sink到kafka中,第一步,我们需要在pom.xml添加相关依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
接下来,我们需要修改我们的程序。将print sink替换成kafka sink,程序如下:
result
.map(new MapFunction<Tuple2<String,Long>, String>() {
@Override
public String map(Tuple2<String, Long> tuple) {
return tuple.toString();
}
})
.addSink(new FlinkKafkaProducer011<>("localhost:9092", "wiki-result", new SimpleStringSchema()));
添加import依赖如下:
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.functions.MapFunction;
使用maven编译出jar包:
$ mvn clean package
生成的jar文件地址在 target/wiki-edits-0.1.jar
现在我们需要启动flink集群
$ cd my/flink/directory
$ bin/start-cluster.sh
同时也需要创建一个kafka topic,保证我们的程序能够写入金去:
$ cd my/kafka/directory
$ bin/kafka-topics.sh --create --zookeeper localhost:2181 \
--replication-factor 1 --partitions 1 --topic wiki-results
现在我们可以准备在我们本地flink集群中运行jar文件
$ cd my/flink/directory
$ bin/flink run -c wikiedits.WikipediaAnalysis path/to/wikiedits-0.1.jar
输出的日志如下:
03/08/2016 15:09:27 Job execution switched to status RUNNING.
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to SCHEDULED
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to DEPLOYING
03/08/2016 15:09:27 Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, AggregateFunction$3, PassThroughWindowFunction) -> Sink: Print to Std. Out (1/1) switched from CREATED to SCHEDULED
03/08/2016 15:09:27 Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, AggregateFunction$3, PassThroughWindowFunction) -> Sink: Print to Std. Out (1/1) switched from SCHEDULED to DEPLOYING
03/08/2016 15:09:27 Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, AggregateFunction$3, PassThroughWindowFunction) -> Sink: Print to Std. Out (1/1) switched from DEPLOYING to RUNNING
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to RUNNING
可以登录http://localhost:8081查看任务运行的情况,我们可以看到有两个operation,出于性能考虑,window之后的操作会被折叠成一个,被称为chaining
可以使用kafka custom命令观察kafka的数据
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic wiki-result