1. 应用场景:首先要明确的是,Logistic Regression是用来分类的;与stanford的公开课进行类比,在该课程中所举的例子是根据训练集中房屋的各种feature(area,location等)和价格来预测测试集中的房屋价格,那么利用Logistic Regression就是来预测一种值域为[0,1]的label,如房屋价格上涨的概率p。若p>=0.5,则将其归为上涨;若p<0.5则将其归为不上涨。 如你要根据数据来预测房价是否会上涨来决定是否现在买房,那么Logistic Regression很适合你的选择,因为你care的是房价是否会上涨,而不是具体某个楼盘的房 Read More
posted @ 2013-03-12 15:41 Frank@609 Views(425) Comments(0) Diggs(0) Edit