10个经典的排序算法

排序算法说明
  0.1 排序的定义
    对一序列对象根据某个关键字进行排序。
  0.2 术语说明
    稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
   不稳定 :如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
   内排序 :所有排序操作都在内存中完成;
   外排序 :由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
   时间复杂度 : 一个算法执行所耗费的时间。
   空间复杂度 :运行完一个程序所需内存的大小。
0.3 算法总结

 

 


图片名词解释:
  n: 数据规模
  k: “桶”的个数
  In-place: 占用常数内存,不占用额外内存
  Out-place: 占用额外内存

  稳定与不稳定:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i] = r [j] ,且r[i] 在r[j] 之前,而在排序之后的序列,r[i]仍在r[j]之前,则称这种排序为稳定的,否则称为不稳定

  内排序:所有排序操作都在内存中完成

  外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行

  

   
 
0.5 算法分类

 

 


0.6 比较和非比较的区别

    常见的快速排序、归并排序、堆排序、冒泡排序 等属于比较排序 。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置 。

    在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。

    比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。

    计数排序、基数排序、桶排序则属于非比较排序 。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置 。

    非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。

    非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。


1、冒泡排序(Bubble Sort)
    冒泡排序 是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

  

   1.1 算法描述
 步骤1: 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
 步骤2: 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
 步骤3: 针对所有的元素重复以上的步骤,除了最后一个;
 步骤4: 重复步骤1~3,直到排序完成。

  1.2 图解过程:

 1.3 代码实现:

/**
     * 冒泡排序
     *
     * @param array
     * @return
     */
    public static int[] bubbleSort(int[] arr) {
        if (arr.length == 0)
            return arr;
        for (int i = 0; i < arr.length; i++)
            for (int j = 0; j < arr.length - 1 - i; j++)
                if (arr[j + 1] < arr[j]) {
                    int temp = arr[j + 1];
                    arr[j + 1] = arr[j];
                    arr[j] = temp;
                }
        return array;
    }

优化:

因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下了没有进行交换,就说明序列有序,因此要在排序过程中设置一个标志flag判断元素是否进行交换。从而减少不必要的比较(这里说的优化,可以在冒泡排序写好后,再进行)

public static void bubbleSort(int[] arr) {
        // 冒泡排序 的时间复杂度 O(n^2), 自己写出
        int temp = 0; // 临时变量
        boolean flag = false; // 标识变量,表示是否进行过交换
        for (int i = 0; i < arr.length - 1; i++) {

            for (int j = 0; j < arr.length - 1 - i; j++) {
                // 如果前面的数比后面的数大,则交换
                if (arr[j] > arr[j + 1]) {
                    flag = true;
                    temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }

            if (!flag) { // 在一趟排序中,一次交换都没有发生过
                break;
            } else {
                flag = false; // 重置flag!!!, 进行下次判断
            }
        }
    }

 


  1.4算法分析
  最佳情况:T(n) = O(n)
  最差情况:T(n) = O(n^2)
  平均情况:T(n) = O(n^2)

 1.5 测试情况 :80000 个随机数组排序时间18秒左右

 

2、选择排序(Selection Sort)
    选择排序 是表现最稳定的排序算法之一 ,因为无论什么数据进去都是O(n2)的时间复杂度 ,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

    选择排序(Selection-sort) 是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 

  2.1 算法描述

     n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
  步骤1:初始状态:无序区为R[1…n],有序区为空;
  步骤2:第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变  为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
步骤3:n-1趟结束,数组有序化了。

2.2 图解:

2.3 代码实现

//选择排序
    public static void selectSort(int[] arr) {
        
        
        
        //在推导的过程,我们发现了规律,因此,可以使用for来解决
        //选择排序时间复杂度是 O(n^2)
        // 数组为101 34 119 1  第一轮排序为 1 34 119 101  第二轮(优化,不排序)1 34 119 101 第三轮 1 34 101 119

        for (int i = 0; i < arr.length - 1; i++) {
            int minIndex = i;
            int min = arr[i];
            for (int j = i + 1; j < arr.length; j++) {
                if (min > arr[j]) { // 说明假定的最小值,并不是最小
                    min = arr[j]; // 重置min
                    minIndex = j; // 重置minIndex
                }
            }

            // 将最小值,放在arr[i], 即交换(优化,使当前如果已经为最小时,不再排序)
            if (minIndex != i) {
                arr[minIndex] = arr[i];
                arr[i] = min;
            }

        
        }
        

 

 


  2.4 算法分析

  最佳情况:T(n) = O(n^2)
  最差情况:T(n) = O(n^2)
  平均情况:T(n) = O(n^2)

   2.5 测试情况:80000 个随机数组排序时间 2-3 秒

 

3、插入排序(Insertion Sort)
    插入排序(Insertion-Sort) 的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

 

  3.1 算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
步骤1: 从第一个元素开始,该元素可以认为已经被排序;
步骤2: 取出下一个元素,在已经排序的元素序列中从后向前扫描;
步骤3: 如果该元素(已排序)大于新元素,将该元素移到下一位置;
步骤4: 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
步骤5: 将新元素插入到该位置后;
步骤6: 重复步骤2~5。

 3.2 图解:


3.3代码实现

//插入排序
    public static void insertSort(int[] arr) {
        int insertVal = 0;
        int insertIndex = 0;
        //使用for循环来把代码简化
        for(int i = 1; i < arr.length; i++) {
            //定义待插入的数
            insertVal = arr[i];
            insertIndex = i - 1; // 即arr[1]的前面这个数的下标
    
            // 给insertVal 找到插入的位置
            // 说明
            // 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
            // 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
            // 3. 就需要将 arr[insertIndex] 后移
            while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
                arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
                insertIndex--;
            }
            // 当退出while循环时,说明插入的位置找到, insertIndex + 1
            // 举例:理解不了就 debug
            //这里我们判断是否需要赋值
            if(insertIndex + 1 != i) {
                arr[insertIndex + 1] = insertVal;
            }
    
            //System.out.println("第"+i+"轮插入");
            //System.out.println(Arrays.toString(arr));
        }

 


     3.4 算法分析

 最佳情况:T(n) = O(n)
 最坏情况:T(n) = O(n^2)
 平均情况:T(n) = O(n^2)

   3.5 测试分析:80000个随机数组排序时间 5秒左右

 

4、希尔排序(Shell Sort)
    

   希尔排序是希尔(Donald Shell) 于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

    希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

4.1 算法描述

    我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。

    先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
步骤1:选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
步骤2:按增量序列个数k,对序列进行k 趟排序;
步骤3:每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
4.2 过程演示

 

 


4.3 代码实现 

 //交换法  发现一个就交换,比较笨

// 希尔排序时, 对有序序列在插入时采用交换法, 
    public static void shellSort(int[] arr) {
        
        int temp = 0;
 // 根据前面的逐步分析,使用循环处理
        for (int gap = arr.length / 2; gap > 0; gap /= 2) {
            for (int i = gap; i < arr.length; i++) {
                // 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
                for (int j = i - gap; j >= 0; j -= gap) {
                    // 如果当前元素大于加上步长后的那个元素,说明交换
                    if (arr[j] > arr[j + gap]) {
                        temp = arr[j];
                        arr[j] = arr[j + gap];
                        arr[j + gap] = temp;
                    }
                }
            }
            
        }

测试: 随机80000个数组排序时间 17秒

//移位法  找好位置再移动

//对交换式的希尔排序进行优化->移位法
    public static void shellSort2(int[] arr) {
        
        // 增量gap, 并逐步的缩小增量
        for (int gap = arr.length / 2; gap > 0; gap /= 2) {
            // 从第gap个元素,逐个对其所在的组进行直接插入排序
            for (int i = gap; i < arr.length; i++) {
                int j = i;
                int temp = arr[j];
                if (arr[j] < arr[j - gap]) {
                    while (j - gap >= 0 && temp < arr[j - gap]) {
                        //移动
                        arr[j] = arr[j-gap];
                        j -= gap;
                    }
                    //当退出while后,就给temp找到插入的位置
                    arr[j] = temp;
                }

            }
        }
    }

测试:80000

 个随机数组排序时间 2秒左右


  4.4 算法分析

  最佳情况:T(n) = O(nlog2 n)
  最坏情况:T(n) = O(nlog2 n)
  平均情况:T(n) =O(nlog2n)

5、归并排序(Merge Sort)
    和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

    归并排序 是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

  5.1 算法描述
  步骤1:把长度为n的输入序列分成两个长度为n/2的子序列;
  步骤2:对这两个子序列分别采用归并排序;
  步骤3:将两个排序好的子序列合并成一个最终的排序序列。
5.2 图解


5.3 代码实现

public class MergetSort {

    public static void main(String[] args) {
        //int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; //
        
        //测试快排的执行速度
        // 创建要给80000个的随机的数组
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }
        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        
        int temp[] = new int[arr.length]; //归并排序需要一个额外空间
         mergeSort(arr, 0, arr.length - 1, temp);
         
         Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序前的时间是=" + date2Str);
         
         //System.out.println("归并排序后=" + Arrays.toString(arr));
    }
    
    
    //分+合方法
    public static void mergeSort(int[] arr, int left, int right, int[] temp) {
        if(left < right) {
            int mid = (left + right) / 2; //中间索引
            //向左递归进行分解
            mergeSort(arr, left, mid, temp);
            //向右递归进行分解
            mergeSort(arr, mid + 1, right, temp);
            //合并
            merge(arr, left, mid, right, temp);
            
        }
    }
    
    //合并的方法
    /**
     * 
     * @param arr 排序的原始数组
     * @param left 左边有序序列的初始索引
     * @param mid 中间索引
     * @param right 右边索引
     * @param temp 做中转的数组
     */
    public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        
        int i = left; // 初始化i, 左边有序序列的初始索引
        int j = mid + 1; //初始化j, 右边有序序列的初始索引
        int t = 0; // 指向temp数组的当前索引
        
        //(一)
        //先把左右两边(有序)的数据按照规则填充到temp数组
        //直到左右两边的有序序列,有一边处理完毕为止
        while (i <= mid && j <= right) {//继续
            //如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
            //即将左边的当前元素,填充到 temp数组 
            //然后 t++, i++
            if(arr[i] <= arr[j]) {
                temp[t] = arr[i];
                t += 1;
                i += 1;
            } else { //反之,将右边有序序列的当前元素,填充到temp数组
                temp[t] = arr[j];
                t += 1;
                j += 1;
            }
        }
        
        //(二)
        //把有剩余数据的一边的数据依次全部填充到temp
        while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
            temp[t] = arr[i];
            t += 1;
            i += 1;    
        }
        
        while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
            temp[t] = arr[j];
            t += 1;
            j += 1;    
        }
        
        
        //(三)
        //将temp数组的元素拷贝到arr
        //注意,并不是每次都拷贝所有
        t = 0;
        int tempLeft = left; // 
        //第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3
        //最后一次 tempLeft = 0  right = 7
        while(tempLeft <= right) { 
            arr[tempLeft] = temp[t];
            t += 1;
            tempLeft += 1;
        }
        
    }

}

 

 

 5.4 测试 8000个随机数组排序时间不到1秒  8000000个随机数组排序时间2秒左右


   5.5 算法分析

  最佳情况:T(n) = O(n)
  最差情况:T(n) = O(nlogn)
  平均情况:T(n) = O(nlogn)

6、快速排序(Quick Sort)
    快速排序 的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

   6.1 算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
    步骤1:从数列中挑出一个元素,称为 “基准”(pivot );
    步骤2:重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
     步骤3:递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
 

  6.2 图解:

 


6.3 代码实现

 

public class QuickSort {

    public static void main(String[] args) {
        //int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};
        
        //测试快排的执行速度
        // 创建要给80000个的随机的数组
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }
        
        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        
        quickSort(arr, 0, arr.length-1);
        
        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序前的时间是=" + date2Str);
        //System.out.println("arr=" + Arrays.toString(arr));
    }

    public static void quickSort(int[] arr,int left, int right) {
        int l = left; //左下标
        int r = right; //右下标
        //pivot 中轴值
        int pivot = arr[(left + right) / 2];
        int temp = 0; //临时变量,作为交换时使用
        //while循环的目的是让比pivot 值小放到左边
        //比pivot 值大放到右边
        while( l < r) { 
            //在pivot的左边一直找,找到大于等于pivot值,才退出
            while( arr[l] < pivot) {
                l += 1;
            }
            //在pivot的右边一直找,找到小于等于pivot值,才退出
            while(arr[r] > pivot) {
                r -= 1;
            }
            //如果l >= r说明pivot 的左右两的值,已经按照左边全部是
            //小于等于pivot值,右边全部是大于等于pivot值
            if( l >= r) {
                break;
            }
            
            //交换
            temp = arr[l];
            arr[l] = arr[r];
            arr[r] = temp;
            
            //如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
            if(arr[l] == pivot) {
                r -= 1;
            }
            //如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
            if(arr[r] == pivot) {
                l += 1;
            }
        }
        
        // 如果 l == r, 必须l++, r--, 否则为出现栈溢出
        if (l == r) {
            l += 1;
            r -= 1;
        }
        //向左递归
        if(left < r) {
            quickSort(arr, left, r);
        }
        //向右递归
        if(right > l) {
            quickSort(arr, l, right);
        }
        
        
    }
}

   6.4 测试:80000个随机数组排序时间 不到1秒  8000000个随机数组排序时间2秒左右


 

  6.5 算法分析

  最佳情况:T(n) = O(nlogn)
  最差情况:T(n) = O(n2)
  平均情况:T(n) = O(nlogn)

7、堆排序(Heap Sort)  树结构的实际应用
    堆排序(Heapsort) 是指利用堆这种数据结构所设计的一种排序算法。堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。每个节点的值都大于或等于其左右孩子节点的值时称为大顶堆;每个节点的值都小于或者等于其左右孩子节点 的值时称为小顶堆。

 

7.1 算法基本思想:(大顶堆)

1)将待排序序列构造成一个大顶堆

2)此时,整个序列的最大值就是堆顶的根节点

3)将其与末尾元素进行交换,此时末尾就为最大值

4)然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,使能得到一个有序序列了

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了
  
 7.2 图解:

要求:给你一个数组{4 6 8 5 9} ,要求使用堆排序法,将数组升序排序

步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

1) .假设给定无序序列结构如下

2) .此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

3) .找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

4) 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

此时,我们就将一个无序序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

1) .将堆顶元素9和末尾元素4进行交换

2) .重新调整结构,使其继续满足堆定义

3) .再将堆顶元素8与末尾元素5进行交换,得到第二大元素8

4) 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

再简单总结下堆排序的基本思路:

1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

 


7.3 代码实现

 

public class HeapSort {

    public static void main(String[] args) {
        //要求将数组进行升序排序
        //int arr[] = {4, 6, 8, 5, 9};
        // 创建要给80000个的随机的数组
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }

        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        
        heapSort(arr);
        
        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序前的时间是=" + date2Str);
        //System.out.println("排序后=" + Arrays.toString(arr));
    }

    //编写一个堆排序的方法
    public static void heapSort(int arr[]) {
        int temp = 0;
        System.out.println("堆排序!!");
        
//        //分步完成
//        adjustHeap(arr, 1, arr.length);
//        System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//        
//        adjustHeap(arr, 0, arr.length);
//        System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
        
        //完成我们最终代码
        //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        for(int i = arr.length / 2 -1; i >=0; i--) {
            adjustHeap(arr, i, arr.length);
        }
        
        /*
         * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
              3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
         */
        for(int j = arr.length-1;j >0; j--) {
            //交换
            temp = arr[j];
            arr[j] = arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, j); 
        }
        
        //System.out.println("数组=" + Arrays.toString(arr)); 
        
    }
    
    //将一个数组(二叉树), 调整成一个大顶堆
    /**
     * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
     * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
     * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
     * @param arr 待调整的数组
     * @param i 表示非叶子结点在数组中索引
     * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
     */
    public  static void adjustHeap(int arr[], int i, int lenght) {
        
        int temp = arr[i];//先取出当前元素的值,保存在临时变量
        //开始调整
        //说明
        //1. k = i * 2 + 1 k 是 i结点的左子结点
        for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
            if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
                k++; // k 指向右子结点
            }
            if(arr[k] > temp) { //如果子结点大于父结点
                arr[i] = arr[k]; //把较大的值赋给当前结点
                i = k; //!!! i 指向 k,继续循环比较
            } else {
                break;//!
            }
        }
        //当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
        arr[i] = temp;//将temp值放到调整后的位置
    }
    
}

  7.4 测试:8000000个随机数组排序 2秒左右


  7.5  算法分析

   最佳情况:T(n) = O(nlogn)
   最差情况:T(n) = O(nlogn)
   平均情况:T(n) = O(nlogn)

8、计数排序(Counting Sort)
    计数排序 的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

    计数排序(Counting sort) 是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

8.1 算法描述
步骤1:找出待排序的数组中最大和最小的元素;
步骤2:统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
步骤3:对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
步骤4:反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
8.2 动图演示


8.3 代码实现

    /**
     * 计数排序
     *
     * @param array
     * @return
     */
    public static int[] CountingSort(int[] array) {
        if (array.length == 0) return array;
        int bias, min = array[0], max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max)
                max = array[i];
            if (array[i] < min)
                min = array[i];
        }
        bias = 0 - min;
        int[] bucket = new int[max - min + 1];
        Arrays.fill(bucket, 0);
        for (int i = 0; i < array.length; i++) {
            bucket[array[i] + bias]++;
        }
        int index = 0, i = 0;
        while (index < array.length) {
            if (bucket[i] != 0) {
                array[index] = i - bias;
                bucket[i]--;
                index++;
            } else
                i++;
        }
        return array;
    }

 


8.4 算法分析

    当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。

最佳情况:T(n) = O(n+k)
最差情况:T(n) = O(n+k)
平均情况:T(n) = O(n+k)

9、桶排序(Bucket Sort)
    桶排序 是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

    桶排序 (Bucket sort)的工作的原理:
假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排

   9.1 算法描述
  步骤1:人为设置一个BucketSize,作为每个桶所能放置多少个不同数值(例如当BucketSize==5时,该桶可以存放{1,2,3,4,5}这几种数字,但是容量不限,即可以存放100个3);
  步骤2:遍历输入数据,并且把数据一个一个放到对应的桶里去;
  步骤3:对每个不是空的桶进行排序,可以使用其它排序方法,也可以递归使用桶排序;
  步骤4:从不是空的桶里把排好序的数据拼接起来。 

注意,如果递归使用桶排序为各个桶排序,则当桶数量为1时要手动减小BucketSize增加下一循环桶的数量,否则会陷入死循环,导致内存溢出。
9.2 图片演示

 

 


9.3 代码实现

 /**
     * 桶排序
     *
     * @param array
     * @param bucketSize
     * @return
     */
    public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
        if (array == null || array.size() < 2)
            return array;
        int max = array.get(0), min = array.get(0);
        // 找到最大值最小值
        for (int i = 0; i < array.size(); i++) {
            if (array.get(i) > max)
                max = array.get(i);
            if (array.get(i) < min)
                min = array.get(i);
        }
        int bucketCount = (max - min) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
        ArrayList<Integer> resultArr = new ArrayList<>();
        for (int i = 0; i < bucketCount; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }
        for (int i = 0; i < array.size(); i++) {
            bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
        }
        for (int i = 0; i < bucketCount; i++) {
            if (bucketSize == 1) { // 如果带排序数组中有重复数字时
                for (int j = 0; j < bucketArr.get(i).size(); j++)
                    resultArr.add(bucketArr.get(i).get(j));
            } else {
                if (bucketCount == 1)
                    bucketSize--;
                ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
                for (int j = 0; j < temp.size(); j++)
                    resultArr.add(temp.get(j));
            }
        }
        return resultArr;
    }

 


9.4 算法分析

    桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

最佳情况:T(n) = O(n+k)
最差情况:T(n) = O(n+k)
平均情况:T(n) = O(n2)

 

10、基数排序(Radix Sort) 桶排序的拓展
    基数排序也是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;

    基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。

  10.1 算法描述
步骤1:取得数组中的最大数,并取得位数;
步骤2:arr为原始数组,从最低位开始取每个位组成radix数组;
步骤3:对radix进行计数排序(利用计数排序适用于小范围数的特点);
  10.2 图解


10.3 代码实现

 

public class RadixSort {

    public static void main(String[] args) {
        int arr[] = { 53, 3, 542, 748, 14, 214};
        
        // 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G 
//        int[] arr = new int[8000000];
//        for (int i = 0; i < 8000000; i++) {
//            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//        }
        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        
        radixSort(arr);
        
        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序前的时间是=" + date2Str);
        
        System.out.println("基数排序后 " + Arrays.toString(arr));
        
    }

    //基数排序方法
    public static void radixSort(int[] arr) {
        
        //根据前面的推导过程,我们可以得到最终的基数排序代码
        
        //1. 得到数组中最大的数的位数
        int max = arr[0]; //假设第一数就是最大数
        for(int i = 1; i < arr.length; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }
        //得到最大数是几位数
        int maxLength = (max + "").length();
        
        
        //定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
        //说明
        //1. 二维数组包含10个一维数组
        //2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
        //3. 名明确,基数排序是使用空间换时间的经典算法
        int[][] bucket = new int[10][arr.length];
        
        //为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
        //可以这里理解
        //比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
        int[] bucketElementCounts = new int[10];
        
        
        //这里我们使用循环将代码处理
        
        for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
            //(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
            for(int j = 0; j < arr.length; j++) {
                //取出每个元素的对应位的值
                int digitOfElement = arr[j] / n % 10;
                //放入到对应的桶中
                bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
                bucketElementCounts[digitOfElement]++;
            }
            //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
            int index = 0;
            //遍历每一桶,并将桶中是数据,放入到原数组
            for(int k = 0; k < bucketElementCounts.length; k++) {
                //如果桶中,有数据,我们才放入到原数组
                if(bucketElementCounts[k] != 0) {
                    //循环该桶即第k个桶(即第k个一维数组), 放入
                    for(int l = 0; l < bucketElementCounts[k]; l++) {
                        //取出元素放入到arr
                        arr[index++] = bucket[k][l];
                    }
                }
                //第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
                bucketElementCounts[k] = 0;
                
            }
            //System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
            
        }

10.4 基数排序的说明:

1)基数排序是对传统桶排序的拓展,速度很快

2)基数排序是经典的空间换时间的方式,占用内存很大,对海量数据排序时,容易造成OutofMemoryError。

3)技术排序时是稳定的。

4)有负数的数组,我们不用基数排序来进行排序,如果要支持负数,参考:

https://code.i-harness.com/zh-CN/q/e98fa99


10.5算法分析

最佳情况:T(n) = O(n * k)
最差情况:T(n) = O(n * k)
平均情况:T(n) = O(n * k)
10.6基数排序有两种方法:

MSD 从高位开始进行排序
LSD 从低位开始进行排序
基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

基数排序: 根据键值的每位数字来分配桶
计数排序: 每个桶只存储单一键值
桶排序: 每个桶存储一定范围的数值

原文链接:https://blog.csdn.net/weixin_41190227/article/details/86600821

posted @ 2020-01-22 11:31  你我皆牛马  阅读(759)  评论(0编辑  收藏  举报