栈实现综合计算器(中缀表达式),前缀,中缀,后缀表达式,逆波兰计算器
思路:
代码:实现多位数的运算
public class Calculator { public static void main(String[] args) { //根据前面老师思路,完成表达式的运算 String expression = "7*2*2-5+1-5+3-4"; // 15//如何处理多位数的问题? //创建两个栈,数栈,一个符号栈 ArrayStack2 numStack = new ArrayStack2(10); ArrayStack2 operStack = new ArrayStack2(10); //定义需要的相关变量 int index = 0;//用于扫描 int num1 = 0; int num2 = 0; int oper = 0; int res = 0; char ch = ' '; //将每次扫描得到char保存到ch String keepNum = ""; //用于拼接 多位数 //开始while循环的扫描expression while(true) { //依次得到expression 的每一个字符 ch = expression.substring(index, index+1).charAt(0); //判断ch是什么,然后做相应的处理 if(operStack.isOper(ch)) {//如果是运算符 //判断当前的符号栈是否为空 if(!operStack.isEmpty()) { //如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数, //在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈 if(operStack.priority(ch) <= operStack.priority(operStack.peek())) { num1 = numStack.pop(); num2 = numStack.pop(); oper = operStack.pop(); res = numStack.cal(num1, num2, oper); //把运算的结果如数栈 numStack.push(res); //然后将当前的操作符入符号栈 operStack.push(ch); } else { //如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈. operStack.push(ch); } }else { //如果为空直接入符号栈.. operStack.push(ch); // 1 + 3 } } else { //如果是数,则直接入数栈 //numStack.push(ch - 48); //? "1+3" '1' => 1 //分析思路 //1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数 //2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈 //3. 因此我们需要定义一个变量 字符串,用于拼接 //处理多位数 keepNum += ch; //如果ch已经是expression的最后一位,就直接入栈 if (index == expression.length() - 1) { numStack.push(Integer.parseInt(keepNum)); }else{ //判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈 //注意是看后一位,不是index++ if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) { //如果后一位是运算符,则入栈 keepNum = "1" 或者 "123" numStack.push(Integer.parseInt(keepNum)); //重要的!!!!!!, keepNum清空 keepNum = ""; } } } //让index + 1, 并判断是否扫描到expression最后. index++; if (index >= expression.length()) { break; } } //当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行. while(true) { //如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】 if(operStack.isEmpty()) { break; } num1 = numStack.pop(); num2 = numStack.pop(); oper = operStack.pop(); res = numStack.cal(num1, num2, oper); numStack.push(res);//入栈 } //将数栈的最后数,pop出,就是结果 int res2 = numStack.pop(); System.out.printf("表达式 %s = %d", expression, res2); } } //先创建一个栈,直接使用前面创建好 //定义一个 ArrayStack2 表示栈, 需要扩展功能 class ArrayStack2 { private int maxSize; // 栈的大小 private int[] stack; // 数组,数组模拟栈,数据就放在该数组 private int top = -1;// top表示栈顶,初始化为-1 //构造器 public ArrayStack2(int maxSize) { this.maxSize = maxSize; stack = new int[this.maxSize]; } //增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop public int peek() { return stack[top]; } //栈满 public boolean isFull() { return top == maxSize - 1; } //栈空 public boolean isEmpty() { return top == -1; } //入栈-push public void push(int value) { //先判断栈是否满 if(isFull()) { System.out.println("栈满"); return; } top++; stack[top] = value; } //出栈-pop, 将栈顶的数据返回 public int pop() { //先判断栈是否空 if(isEmpty()) { //抛出异常 throw new RuntimeException("栈空,没有数据~"); } int value = stack[top]; top--; return value; } //显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据 public void list() { if(isEmpty()) { System.out.println("栈空,没有数据~~"); return; } //需要从栈顶开始显示数据 for(int i = top; i >= 0 ; i--) { System.out.printf("stack[%d]=%d\n", i, stack[i]); } } //返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示 //数字越大,则优先级就越高. public int priority(int oper) { if(oper == '*' || oper == '/'){ return 1; } else if (oper == '+' || oper == '-') { return 0; } else { return -1; // 假定目前的表达式只有 +, - , * , / } } //判断是不是一个运算符 public boolean isOper(char val) { return val == '+' || val == '-' || val == '*' || val == '/'; } //计算方法 public int cal(int num1, int num2, int oper) { int res = 0; // res 用于存放计算的结果 switch (oper) { case '+': res = num1 + num2; break; case '-': res = num2 - num1;// 注意顺序 break; case '*': res = num1 * num2; break; case '/': res = num2 / num1; break; default: break; } return res; } }
2.前缀表达式(波兰表达式)
(1)前缀表达式又称为波兰式,前缀表达式的运算符位于操作数之前
(2)举例:(3+4)*5-6对应得前缀表达式就是 - * + 3 4 5 6
前缀表达式的计算机求值:
从右至左扫描表达式,遇到数字时,将数字压入栈中,运到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程直到表示式最左端,最后运算得出的值即为表达式的结果
例如:(3+4)*5-6对应得前缀表达式就是 - * + 3 4 5 6 ,针对前缀表达式求值步骤如下:
1)从右至左扫描,将 6 5 4 3 压入栈中
2)遇到+ 运算符,因此弹出3 和4(3为栈顶元素,4为次顶元素),计算出3+4的值,的7,再将7入栈
3)接下来是* 运算,因此弹出7和5 计算出7*5=35 ,将35入栈
4)最后是- 运算,计算出35-6的值,即29,因此得出最终结果
3.中缀表达式:
1)中缀表达式就是常见的运算表达式,入3+4)*5-6
2)中缀表示式的求值是我们人最熟悉的,但是对计算机来说却不好操作,因此在计算结果时,往往会将中缀表达式转成其他表示式来操作(一般转成后缀表达式)
4.后缀表达式:
1)后缀表示式又称为逆波兰表达式,与前缀表示式相似,只是运算符位于操作符之后
2)如:3+4)*5-6对应的后缀表达式就是 3 4 + 5 * 6 -
3)再比如:
后缀表达式的计算机求值:
从左至右扫描表达式,遇到数字时,将数字压入栈中,运到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程直到表示式最端右,最后运算得出的值即为表达式的结果
5.逆波兰计算式:
1)输入一个逆波兰表达式(后缀表达式),使用栈(stack),计算其结果
2)支持小括号和多位数整数
public class PolandNotation { public static void main(String[] args) { //完成将一个中缀表达式转成后缀表达式的功能 //说明 //1. 1+((2+3)×4)-5 => 转成 1 2 3 + 4 × + 5 – //2. 因为直接对str 进行操作,不方便,因此 先将 "1+((2+3)×4)-5" =》 中缀的表达式对应的List // 即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] //3. 将得到的中缀表达式对应的List => 后缀表达式对应的List // 即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–] String expression = "1+((2+3)*4)-5";//注意表达式 List<String> infixExpressionList = toInfixExpressionList(expression); System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList); System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–] System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ? /* //先定义给逆波兰表达式 //(30+4)×5-6 => 30 4 + 5 × 6 - => 164 // 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / + //测试 //说明为了方便,逆波兰表达式 的数字和符号使用空格隔开 //String suffixExpression = "30 4 + 5 * 6 -"; String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76 //思路 //1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中 //2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算 List<String> list = getListString(suffixExpression); System.out.println("rpnList=" + list); int res = calculate(list); System.out.println("计算的结果是=" + res); */ } //即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–] //方法:将得到的中缀表达式对应的List => 后缀表达式对应的List public static List<String> parseSuffixExpreesionList(List<String> ls) { //定义两个栈 Stack<String> s1 = new Stack<String>(); // 符号栈 //说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出 //因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2 //Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2 List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2 //遍历ls for(String item: ls) { //如果是一个数,加入s2 if(item.matches("\\d+")) { s2.add(item); } else if (item.equals("(")) { s1.push(item); } else if (item.equals(")")) { //如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃 while(!s1.peek().equals("(")) { s2.add(s1.pop()); } s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号 } else { //当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较 //问题:我们缺少一个比较优先级高低的方法 while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) { s2.add(s1.pop()); } //还需要将item压入栈 s1.push(item); } } //将s1中剩余的运算符依次弹出并加入s2 while(s1.size() != 0) { s2.add(s1.pop()); } return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List } //方法:将 中缀表达式转成对应的List // s="1+((2+3)×4)-5"; public static List<String> toInfixExpressionList(String s) { //定义一个List,存放中缀表达式 对应的内容 List<String> ls = new ArrayList<String>(); int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串 String str; // 对多位数的拼接 char c; // 每遍历到一个字符,就放入到c do { //如果c是一个非数字,我需要加入到ls if((c=s.charAt(i)) < 48 || (c=s.charAt(i)) > 57) { ls.add("" + c); i++; //i需要后移 } else { //如果是一个数,需要考虑多位数 str = ""; //先将str 置成"" '0'[48]->'9'[57] while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) { str += c;//拼接 i++; } ls.add(str); } }while(i < s.length()); return ls;//返回 } //将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中 public static List<String> getListString(String suffixExpression) { //将 suffixExpression 分割 String[] split = suffixExpression.split(" "); List<String> list = new ArrayList<String>(); for(String ele: split) { list.add(ele); } return list; } //完成对逆波兰表达式的运算 /* * 1)从左至右扫描,将3和4压入堆栈; 2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈; 3)将5入栈; 4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈; 5)将6入栈; 6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果 */ public static int calculate(List<String> ls) { // 创建给栈, 只需要一个栈即可 Stack<String> stack = new Stack<String>(); // 遍历 ls for (String item : ls) { // 这里使用正则表达式来取出数 if (item.matches("\\d+")) { // 匹配的是多位数 // 入栈 stack.push(item); } else { // pop出两个数,并运算, 再入栈 int num2 = Integer.parseInt(stack.pop()); int num1 = Integer.parseInt(stack.pop()); int res = 0; if (item.equals("+")) { res = num1 + num2; } else if (item.equals("-")) { res = num1 - num2; } else if (item.equals("*")) { res = num1 * num2; } else if (item.equals("/")) { res = num1 / num2; } else { throw new RuntimeException("运算符有误"); } //把res 入栈 stack.push("" + res); } } //最后留在stack中的数据是运算结果 return Integer.parseInt(stack.pop()); } } //编写一个类 Operation 可以返回一个运算符 对应的优先级 class Operation { private static int ADD = 1; private static int SUB = 1; private static int MUL = 2; private static int DIV = 2; //写一个方法,返回对应的优先级数字 public static int getValue(String operation) { int result = 0; switch (operation) { case "+": result = ADD; break; case "-": result = SUB; break; case "*": result = MUL; break; case "/": result = DIV; break; default: System.out.println("不存在该运算符" + operation); break; } return result; } }