pytorch 5 classification 分类

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt

n_data = torch.ones(100, 2)  # 100个具有2个属性的数据 shape=(100,2)
x0 = torch.normal(2*n_data, 1)  # 根据原始数据生成随机数据,第一个参数是均值,第二个是方差,这里设置为1了,shape=(100,2)
y0 = torch.zeros(100)  # 100个0作为第一类数据的标签,shape=(100,1)
x1 = torch.normal(-2*n_data, 1)
y1 = torch.ones(100)

x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # cat数据合并 32-bit floating
y = torch.cat((y0, y1), 0).type(torch.LongTensor)   # 64-bit integer

x, y = Variable(x), Variable(y)

plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], s=100, lw=0)
plt.show()


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

net = Net(2, 10, 2)  # 数据是二维的所以输入特征是2,输出是两种类别所以输出层特征是2
print(net)
> Net(
>   (hidden): Linear(in_features=2, out_features=10, bias=True)
>   (predict): Linear(in_features=10, out_features=2, bias=True)
> )
# plt.ion()
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = torch.nn.CrossEntropyLoss()  # 交叉熵 CrossEntropy [0.1, 0.2, 0.7] [0,0,1] 数据越大,是这一类的概率越大

for t in range(100):
    out = net.forward(x)     # 数据经过所有的网络,输出预测值

    loss = loss_func(out, y) # 输入与预测值之间的误差loss

    optimizer.zero_grad()    # 梯度重置
    loss.backward()          # 损失值反向传播,计算梯度
    optimizer.step()         # 梯度优化    

    if t % 2 == 0:
        # 画图部分 plot and show learning process
        plt.cla()
        prediction = torch.max(out, 1)[1]
        pred_y = prediction.data.numpy()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color':  'red'})
        plt.pause(0.5)

# plt.ioff()
plt.show()

END

posted @ 2019-02-26 19:28  YangZhaonan  阅读(2344)  评论(0编辑  收藏  举报