pytorch 5 classification 分类
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
n_data = torch.ones(100, 2) # 100个具有2个属性的数据 shape=(100,2)
x0 = torch.normal(2*n_data, 1) # 根据原始数据生成随机数据,第一个参数是均值,第二个是方差,这里设置为1了,shape=(100,2)
y0 = torch.zeros(100) # 100个0作为第一类数据的标签,shape=(100,1)
x1 = torch.normal(-2*n_data, 1)
y1 = torch.ones(100)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # cat数据合并 32-bit floating
y = torch.cat((y0, y1), 0).type(torch.LongTensor) # 64-bit integer
x, y = Variable(x), Variable(y)
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], s=100, lw=0)
plt.show()
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net = Net(2, 10, 2) # 数据是二维的所以输入特征是2,输出是两种类别所以输出层特征是2
print(net)
> Net(
> (hidden): Linear(in_features=2, out_features=10, bias=True)
> (predict): Linear(in_features=10, out_features=2, bias=True)
> )
# plt.ion()
plt.show()
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = torch.nn.CrossEntropyLoss() # 交叉熵 CrossEntropy [0.1, 0.2, 0.7] [0,0,1] 数据越大,是这一类的概率越大
for t in range(100):
out = net.forward(x) # 数据经过所有的网络,输出预测值
loss = loss_func(out, y) # 输入与预测值之间的误差loss
optimizer.zero_grad() # 梯度重置
loss.backward() # 损失值反向传播,计算梯度
optimizer.step() # 梯度优化
if t % 2 == 0:
# 画图部分 plot and show learning process
plt.cla()
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.5)
# plt.ioff()
plt.show()
END