tensorflowonspark运行官方mnist例子
搭建tensorflowonspark请参考:https://www.cnblogs.com/yangyuxia/p/15634030.html
步骤一:下载mnist数据集
1 2 3 4 5 6 | cd / home / jianyuan curl - O "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz" curl - O "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz" curl - O "http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz" curl - O "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz" zip - r mnist. zip * |
步骤二:将 MNIST zip 文件转换为 HDFS 文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | #python的安装路径<br>export PYTHON_ROOT=/opt/module/python3 export LD_LIBRARY_PATH = ${PATH} export PYSPARK_PYTHON = ${PYTHON_ROOT} / bin / python3 export SPRAK_YARN_USER_ENV = "PYSPARK_PYTHON=/opt/module/python3/bin/python3" export PATH = ${PYTHON_ROOT} / bin / :$PATH export QUEUE = default<br> #CDH的安装路径 export LIB_HDFS = / opt / cloudera / parcels / CDH / lib64<br> #<code>path to libjvm.so</code> export LIB_JVM = $JAVA_HOME / jre / lib / amd64 / server / opt / cloudera / parcels / CDH - 6.2 . 1 - 1.cdh6 . 2.1 .p0. 1580995 / bin / spark - submit \ - - master yarn \ - - deploy - mode cluster \ - - queue ${QUEUE} \ - - num - executors 3 \ - - executor - memory 3G \ - - archives hdfs: / / / user / mnist. zip \ - - jars hdfs: / / / user / root / tensorflow - hadoop - 1.0 - SNAPSHOT.jar \ / home / jianyuan / TensorFlowOnSpark - 2.2 . 4 / examples / mnist / mnist_data_setup.py \ - - output mnist<br><br> ###注意:需要加--jar 指明tensorflow-hadoop-1.0-SNAPSHOT.jar,要不报java.lang.ClassNotFoundException: org.tensorflow.hadoop.io.TFRecordFileOutputFormat |
步骤三:运行分布式 MNIST 训练(使用 InputMode.SPARK)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | / opt / cloudera / parcels / CDH - 6.2 . 1 - 1.cdh6 . 2.1 .p0. 1580995 / bin / spark - submit \ - - master yarn \ - - deploy - mode cluster \ - - queue default \ - - num - executors 3 \ - - executor - memory 2G \ - - py - files / home / jianyuan / TensorFlowOnSpark - 2.2 . 4 / tfspark. zip \ - - conf spark.dynamicAllocation.enabled = false \ - - conf spark.yarn.maxAppAttempts = 1 \ - - archives hdfs: / / / user / root / TensorFlowOnSpark - 2.2 . 4.tar .gz #tensorflowonspark \ - - conf spark.executorEnv.LD_LIBRARY_PATH = $LIB_JVM:$LIB_HDFS \ - - conf spark.executorEnv.CLASSPATH = $(hadoop classpath - - glob) \ - - conf spark.yarn.appMasterEnv.PYSPARK_PYTHON = / usr / bin / python3 \ / home / jianyuan / TensorFlowOnSpark - 2.2 . 4 / examples / mnist / keras / mnist_spark.py \ - - images_labels hdfs: / / / user / root / mnist / csv / train \ - - model_dir hdfs: / / / user / root / mnist_model \ - - export_dir hdfs: / / / user / root / mnist_export |
步骤四:运行分布式 MNIST 推理(使用 InputMode.SPARK)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | / opt / cloudera / parcels / CDH - 6.2 . 1 - 1.cdh6 . 2.1 .p0. 1580995 / bin / spark - submit \ - - master yarn \ - - deploy - mode cluster \ - - queue default \ - - num - executors 3 \ - - executor - memory 2G \ - - py - files / root / TensorFlowOnSpark - 2.2 . 1 / tfspark. zip \ - - conf spark.dynamicAllocation.enabled = false \ - - conf spark.yarn.maxAppAttempts = 1 \ - - archives hdfs: / / / user / root / TensorFlowOnSpark - 2.2 . 1.tar .gz #tensorflowonspark \ - - conf spark.executorEnv.LD_LIBRARY_PATH = $LIB_JVM:$LIB_HDFS \ - - conf spark.executorEnv.CLASSPATH = $(hadoop classpath - - glob) \ - - conf spark.yarn.appMasterEnv.PYSPARK_PYTHON = / usr / bin / python3 \ / home / jianyuan / TensorFlowOnSpark - 2.2 . 4 / examples / mnist / keras / mnist_inference.py \ - - images_labels hdfs: / / / user / root / mnist / tfr / test \ - - export_dir hdfs: / / / user / root / mnist_export / 1638364658 \ - - output hdfs: / / / user / root / predictions |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· winform 绘制太阳,地球,月球 运作规律
· 上周热点回顾(3.3-3.9)