celery

1 Celery架构,介绍

# Celery:芹菜(跟翻译没有任何关系),分布式异步任务框架,框架(跟其他web框架无关)
# Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
# 架构
-broker:任务中间件,用户提交的任务,存在这个里面(redis,rabbitmq)
-worker:任务执行者,消费者,真正执行任务的进程(真正干活的人)
-backend:任务结果存储,任务执行后的结果(redis,rabbitmq)
# celery服务为为其他项目服务提供异步解决任务需求的
# celery能够做的事:
-异步任务(区分同步任务)
-延迟任务
-定时任务(其他框架做)
# 更好的理解celery
注:会有两个服务同时运行,一个是项目服务(django服务),一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求
人是一个独立运行的服务(django) | 医院也是一个独立运行的服务(celery)
正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求

2 celery的简单使用

# 安装 windows
# pip install celery
# pip3 install eventlet

2.1 celery_task

# pip3 install celery
from celery import Celery
# app=Celery('test',)
# backend='redis://:密码@127.0.0.1:6379/1' 如果有密码,这么写
broker = 'redis://127.0.0.1:6379/1' # redis地址
backend = 'redis://127.0.0.1:6379/2' # redis地址
# 1 实例化得到celery对象
app = Celery(__name__, backend=backend, broker=broker)
# 2 写一堆任务(计算a+b,挖井,砍树),函数,
# 使用装饰器包裹任务(函数)
@app.task()
def add(a, b):
import time
time.sleep(2)
return a + b

2.2 提交任务

# from celery_task import app
import celery_task
# 1 同步执行
# res = celery_task.add(2, 3) # 普通的同步任务,同步执行任务
# print(res)
# 2 异步任务:
# 第一步:提交(使用任务名.apply_async(参数))
# 结果是任务id号,唯一标识这个任务
# res = celery_task.add.apply_async(args=[2, 3])
res = celery_task.add.apply_async(kwargs={'a':2,'b':3})
print(res) # abab1ad3-0e58-4faa-bc05-14d157dc8217
# 第二步:让worker执行--->结果存到redis
# 通过命令启动
# 非windows
# 5.x之前这么启动
# 命令:celery worker -A celery_task -l info
# 5.x以后
# celery -A celery_task.main worker -l info
# windows:
# pip3 install eventlet
# 5.x之前这么启动
# celery worker -A celery_task -l info -P eventlet
# 5.x以后
# celery -A celery_task.main worker -l info -P eventlet
# 第三步:查看任务执行结果

2.3 查看任务结果

from celery_task import app
from celery.result import AsyncResult
id = 'abab1ad3-0e58-4faa-bc05-14d157dc8217'
if __name__ == '__main__':
a = AsyncResult(id=id, app=app)
if a.successful():
print('任务执行成功了')
result = a.get() # 异步任务执行的结果
print(result)
elif a.failed():
print('任务失败')
elif a.status == 'PENDING':
print('任务等待中被执行')
elif a.status == 'RETRY':
print('任务异常后正在重试')
elif a.status == 'STARTED':
print('任务已经开始被执行')

3 celery包结构

# 目录结构
-celery_task # 包名
__init__.py
celery.py # app所在py文件
course_task.py # 任务
order_task.py # 任务
user_task.py # 任务
提交任务.py # 提交任务
查看结果.py # 查看结果

3.1 celery_task /celery.py

from celery import Celery
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
# include 是一个列表,放被管理的task 的py文件
app = Celery(__name__, backend=backend, broker=broker,include=[
'celery_task.course_task',
'celery_task.order_task',
'celery_task.user_task',
])
# 原来,任务写在这个py文件中
# 后期任务非常多,可能有用户相关任务,课程相关任务,订单相关任务。。。

3.2 celery_task /任务.py

##########user_task.py
import time
from .celery import app
# 发送短信任务
@app.task()
def send_sms(phone, code):
time.sleep(3) # 模拟发送短信延迟
print('短信发送成功,手机号是:%s,验证码是:%s' % (phone, code))
return '短信发送成功'
############order_task.py
from .celery import app
# 生成订单任务
@app.task()
def make_order():
with open(r'D:\py18\luffy_api\script\2 celery的包结构\celery_task\order.txt', 'a', encoding='utf-8') as f:
f.write('生成一条订单\n')
return True
############course_task.py
from .celery import app
@app.task()
def add(a,b):
return a+b

3.3 提交任务.py

from celery_task import user_task,order_task
# 提交一个发送短信任务
# res = user_task.send_sms.apply_async(args=['18972374345', '8888'])
# print(res)
# 提交一个生成订单任务
# res=order_task.make_order.apply_async()
# print(res)
############## celery 执行延迟任务 ##################
# 添加延迟任务
# from datetime import datetime, timedelta
# # datetime.utcnow() 获取当前的utc时间
# eta=datetime.utcnow() + timedelta(seconds=50) # 50s后的utc时间
# # 10s后,发送短信
# res=user_task.send_sms.apply_async(args=(200, 50), eta=eta)
# print(res)
### 使用第二种方式执行异步任务
# res=user_task.send_sms.apply_async(args=('12345566677', '8888'))
res=user_task.send_sms.delay('12345566677', '8888')
print(res)

3.4 查看结果.py

from celery_task.celery import app
from celery.result import AsyncResult
id = '0f283e22-e8d0-40a6-a8ed-8998038bc7a3'
if __name__ == '__main__':
a = AsyncResult(id=id, app=app)
print(app.conf)
if a.successful():
print('任务执行成功了')
result = a.get() # 异步任务执行的结果
print(result)
elif a.failed():
print('任务失败')
elif a.status == 'PENDING':
print('任务等待中被执行')
elif a.status == 'RETRY':
print('任务异常后正在重试')
elif a.status == 'STARTED':
print('任务已经开始被执行')

4 celery异步任务,延迟任务

4.1 执行延迟任务

from datetime import datetime, timedelta
# datetime.utcnow() 获取当前的utc时间
eta=datetime.utcnow() + timedelta(seconds=50) # 50s后的utc时间
# 10s后,发送短信
res=user_task.send_sms.apply_async(args=(200, 50), eta=eta)
print(res)

4.1 执行异步任务

# 方式一:不写时间,就表示立即执行
user_task.send_sms.apply_async(args=('12345566677', '8888'))
# 方式二:
res=user_task.send_sms.delay('12345566677', '8888')

5 celery定时任务

5.1 第一步:celey.py中写入

# 第一步,在包(celery_task)下的celey.py中写入
###修改celery的配置信息 app.conf整个celery的配置信息
# 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False
####配置定时任务
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
'send_sms_every_3_seconds': {
'task': 'celery_task.user_task.send_sms', # 指定执行的是哪个任务
'schedule': timedelta(seconds=3),
# 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
'args': ('18953675221', '8888'),
},
'make_order_every_5_seconds': {
'task': 'celery_task.order_task.make_order', # 指定执行的是哪个任务
'schedule': timedelta(seconds=5),
},
'add_every_1_seconds': {
'task': 'celery_task.course_task.add', # 指定执行的是哪个任务
'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
'args': (3, 5),
},
}

5.2 第二步:启动worker

# celery worker -A 包名 -l info -P eventlet
celery worker -A celery_task.main -l info -P eventlet
# 如果beat没有启动,worker是没有活干的,需要启动beat,worker才能干活,和beat启动顺序无先后

5.3 第三步:启动beat

celery beat -A celery_task -l

6 django中集成celery

# 0 了解
-django-celery # 第三方把django和celery集成起来,方便我们使用,但是,第三方写的包的版本,跟celery和django版本完全对应
-我们自己使用包结构集成到django中
# 第一步,把写好的包,直接复制到项目根路径
# 第二步,在视图类中(函数中)
from celery_task.user_task import send_sms
def test(request):
mobile = request.GET.get('mobile')
code = '9999'
res = send_sms.delay(mobile, code) # 同步发送假设3分支钟,异步发送,直接就返回id了,是否成功不知道,后期通过id查询
print(res)
return HttpResponse(res)

7 django集成celery实现定时任务(定时更新首页轮播图)

# 首页轮播图,加入缓存
-因为如果不加缓存,每次用户访问首页,都去查一次数据库,对数据库压力大
-第一次访问查数据库,拿到数据,放到缓存(redis),以后再访问,直接从redis中能够获取
-双写一致性问题(redis缓存和mysql数据不同步)
-有方案
-缓存穿透,缓存击穿,缓存雪崩问题(暂时不讲)
class BannerView(ViewSetMixin, ListAPIView):
queryset = models.Banner.objects.all().filter(is_delete=False, is_show=True).order_by('orders')[
:settings.BANNER_COUNT]
serializer_class = serializer.BannerSerializer
def list(self, request, *args, **kwargs):
# 先去缓存中获取,如果缓存有,直接返回,如果没有,去数据库查询,放到缓存
# 先去缓存中获取
banner_list = cache.get('banner_list_cache')
if not banner_list: # 去数据库中获取
# 没有走缓存
print('查了数据库')
res = super().list(request, *args, **kwargs)
banner_list = res.data # res是Response对象
# 放入到缓存中
cache.set('banner_list_cache', banner_list)
return Response(data=banner_list)

8 双写一致性问题

# redis缓存和mysql数据不同步
# 缓存更新策略
-先更新数据库,再更新缓存(可靠性高一些)
-先更新数据库,再删缓存(可靠性高一些)
-先删缓存,再更新数据库(缓存删了,数据库还没更新,来了一个请求,缓存了老数据)
-定时更新(对实时性要求不高)
-每隔12个小时,更新一下缓存

8 首页轮播图缓存定时更新

8.1 home_task.py

# 更新轮播图缓存的任务
from celery_task.celery import app
from home import models
from django.conf import settings
from home import serializer
from django.core.cache import cache
@app.task()
def update_banner():
# 1 从mysql中取出轮播图数据
queryset = models.Banner.objects.all().filter(is_delete=False, is_show=True).order_by('orders')[
:settings.BANNER_COUNT]
# 2 序列化
ser = serializer.BannerSerializer(instance=queryset, many=True)
# 3 获取到字典,手动拼上前面的地址
banner_list = ser.data
for banner in banner_list:
banner['image'] = settings.BACKEND_URL % str(banner['image'])
# 4 放到缓存中
cache.set('banner_list_cache', banner_list)
return True

8.2 celery.py

from celery import Celery
# 由于celery和django 是独立的两个服务,要想在celery服务中使用django,必须加这两句
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "luffy_api.settings.dev")
# import django
# django.setup()
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
# include 是一个列表,放被管理的task 的py文件
app = Celery(__name__, backend=backend, broker=broker, include=[
'celery_task.course_task',
'celery_task.order_task',
'celery_task.user_task',
'celery_task.home_task', #新写的task,一定要注册
])
# 原来,任务写在这个py文件中
# 后期任务非常多,可能有用户相关任务,课程相关任务,订单相关任务。。。
#### 注册定时任务
###修改celery的配置信息 app.conf整个celery的配置信息
# 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False
# 配置定时任务
from datetime import timedelta
app.conf.beat_schedule = {
'update_banner_every_3_seconds': {
'task': 'celery_task.home_task.update_banner', # 指定执行的是哪个任务
'schedule': timedelta(seconds=3),
},
}

8.3 启动djagno,启动beat,启动worker

python manage.py runserver
celery -A celery_task beat -l info
celery -A celery_task worker -l info -P eventlet

celery定义一个1小时后执行的任务

from datetime import datetime, timedelta
from celery import Celery
app = Celery('my_tasks', broker='amqp://guest@localhost//')
@app.task
def my_task():
# 任务的逻辑代码
pass
# 计算一个小时后的时间
eta_time = datetime.now() + timedelta(hours=1)
# 使用 ETA 选项调用任务
result = my_task.apply_async(eta=eta_time)
posted @   Gentry-Yang  阅读(17)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
点击右上角即可分享
微信分享提示