人工智能、机器学习和深度学习
一、人工智能
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。
“人工智能”是“一门技术科学”,它研究与开发的对象是“理论、技术及应用系统”,研究的目的是为了“模拟、延伸和扩展人的智能”
我们现在看到的貌似很高端的技术,如图像识别、NLP,其实依然没有脱离这个范围,就是“模拟人在看图方面的智能”和“模拟人在听话方面的智能”,本质上和“模拟人在计算方面的智能”没啥两样,虽然难度有高低,但目的是一样的——模拟、延伸和扩展人的智能
二、机器学习
机器学习是一种实现人工智能的方法
机器学习是让计算机模拟或实现人类的学习行为,机器学习就是用算法解析数据,不断学习,对世界中发生的事做出判断和预测的一项技术。
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
1、“机器学习”是“模拟、延伸和扩展人的智能”的一条路径,所以是人工智能的一个子集;
2、“机器学习”是要基于大量数据的,也就是说它的“智能”是用大量数据喂出来的;
3、正是因为要处理海量数据,所以大数据技术尤为重要;“机器学习”只是大数据技术上的一个应用。
常用的10大机器学习算法有:决策树、随机森林、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔科夫。
从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。
传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现
以视觉感知为例,一个完整的机器学习过程大概是这样:
三、深度学习
人工智能、机器学习、深度学习的关系
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· AI与.NET技术实操系列(六):基于图像分类模型对图像进行分类
2020-11-05 静态变量与代码块
2019-11-05 同一个切点方法有两个切面下的执行情况