yangyang12138

导航

tensorflow2(四)

1.线性回归

  引入数据

    

column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight',
                'Acceleration', 'Model Year', 'Origin']
raw_dataset = pd.read_csv(dataset_path, names=column_names,
                      na_values = "?", comment='\t',
                      sep=" ", skipinitialspace=True)

dataset = raw_dataset.copy()
dataset.tail()

 

  切分训练集和预测集

train_dataset = dataset.sample(frac=0.8,random_state=0)
test_dataset = dataset.drop(train_dataset.index)

数据归一化

  

train_stats = train_dataset.describe()
train_stats.pop("MPG")
train_stats = train_stats.transpose()
train_stats
def norm(x):
  return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)
def norm(x):
  return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)

创建模型

  

def build_model():
  model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(1)
  ])

  optimizer = tf.keras.optimizers.RMSprop(0.001)

  model.compile(loss='mse',
                optimizer=optimizer,
                metrics=['mae', 'mse'])
  return model

训练数据

model = build_model()

class PrintDot(tf.keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs):
    if epoch % 100 == 0: print('')
    print('.', end='')

EPOCHS = 1000

train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')

history = model.fit(
  normed_train_data, train_labels,
  epochs=EPOCHS, validation_split = 0.2, verbose=0,
  callbacks=[PrintDot()])

 

posted on 2020-09-24 02:37  杨杨09265  阅读(161)  评论(0编辑  收藏  举报