paddle模型应用
1.首先要保存模型
fluid.io.save_inference_model('../bot15.model', ["vec"], [pred1,pred2,pred3], exe)
第二个参数预测样本集的数据feed,
第三个参数是预测数据
第四个参数是当前运行程序
2.加载样本
fluid.io.load_inference_model('../bot15.model', exe)
这里的exe可以是一个新的exe
具体代码如下:
from __future__ import print_function import paddle import paddle.fluid as fluid import numpy as np import sys import math EMB_DIM = 81 #词向量的维度 HID_DIM = 512 #隐藏层的维度 STACKED_NUM = 3 #LSTM双向栈的层数 BATCH_SIZE = 128 #batch的大小 result_vec = np.load('../result_vec2.npy',allow_pickle=True).tolist() use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) inference_scope = fluid.core.Scope() d = [] for i in result_vec: k = [[o] for o in i[1]] d.append(k) lod = np.array(k,dtype='float32') def pred(o): [inferencer, feed_target_names, fetch_targets] = fluid.io.load_inference_model('../bot15.model', exe) results = exe.run(inferencer,feed={'vec': fluid.create_lod_tensor(o,[[81]],place)}, fetch_list=fetch_targets,return_numpy=False) print(np.array(results[0]).tolist()[0][0],',', np.array(results[1]).tolist()[0][0],',', np.array(results[2]).tolist()[0][0])